摘要
讨论了局部凸空间中推广的Leray-Schauder度的基本性质,建立了一些新的不动点定理,并给出了对局部凸空间Cauchy初值问题的应用.这些定理是Banach空间中相应结果的推广.
In this paper,the properties of Leray-Schauder degree generalized in locally convex spaces are discussed.Then some new fixed point theorems are proved.Finally,one of these theorems is applied to study the existence of solutions to Cauchy initial value problem.The results obtained are the generalization of the corresponding ones in Banach spaces.
出处
《纯粹数学与应用数学》
CSCD
2010年第3期467-472,共6页
Pure and Applied Mathematics
基金
国家自然科学基金(10801065)