期刊文献+

局部凸空间中的不动点定理及其应用

Fixed point theorems in locally convex spaces and its applications
下载PDF
导出
摘要 讨论了局部凸空间中推广的Leray-Schauder度的基本性质,建立了一些新的不动点定理,并给出了对局部凸空间Cauchy初值问题的应用.这些定理是Banach空间中相应结果的推广. In this paper,the properties of Leray-Schauder degree generalized in locally convex spaces are discussed.Then some new fixed point theorems are proved.Finally,one of these theorems is applied to study the existence of solutions to Cauchy initial value problem.The results obtained are the generalization of the corresponding ones in Banach spaces.
作者 史红波 朱江
出处 《纯粹数学与应用数学》 CSCD 2010年第3期467-472,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(10801065)
关键词 局部凸空间 LERAY-SCHAUDER度 不动点定理 Cauchy初值问题 locally convex spaces Leray-Schauder degree fixed point theorem Cauchy initial value problem
  • 相关文献

参考文献15

  • 1贺飞,刘德,罗成.局部凸空间中的Drop定理和Phelps引理以及Ekeland变分原理[J].数学学报(中文版),2006,49(5):1145-1152. 被引量:6
  • 2贺飞,刘德,罗成.局部凸空间中的Drop定理,Phelps引理和Ekeland变分原理的推广(英文)[J].数学进展,2007,36(5):593-598. 被引量:2
  • 3Qiu Jinghui. Local completeness, Drop theorem and Ekeland's variational principle[J]. J. Math. Anal. Appl., 2005,311:23-39.
  • 4O'Regan D. Some fixed point theorems for concentrative mappings between locally convex linear topological spaces[J]. Nonl. Anal., 1996,27:1437-1446.
  • 5Agarwal R P, O'Regan D. Leray-Schauder and Krasnoselskii results for multivalued maps defined on pseudoopen subsets of a Frdchet space[J]. Appl. Math. Lett., 2006,19:1327-1334.
  • 6O'Regan D. Integral equations in reflexive Banach spaces and weak topoplogies[J].Proc. Amer. Math. Soc., 1996,124:607-614.
  • 7O'Regan D. Fixed points for set-valued mappings in locally convex linear topological spaces[J]. Math. Comput. Modelling, 1998,28:1437-1446.
  • 8O'Regan D, Agaxwal R P. Fixed point theory for admissible multimaps defined on closed subsets of Frechet spaces[J]. J. Math. Anal. Appl., 2003,277:438-445.
  • 9Cammaroto F, Chinni A, Sturiale G. A remark on Ekeland's principle in locally convex topological vector spaces[J]. Math. Comput. Modelling, 1999,30:75-79.
  • 10Polewczak J. Ordinary differential equations on closed subsets of locally convex space with applications to fixed point theorems[J]. J. Math. Anal. Appl., 1990,151:208-225.

二级参考文献38

  • 1贺飞,刘德.拓扑线性空间中的Drop定理和Phelps引理以及Ekeland变分原理[J].数学年刊(A辑),2006,27(4):535-542. 被引量:4
  • 2贺飞,刘德,罗成.局部凸空间中的Drop定理和Phelps引理以及Ekeland变分原理[J].数学学报(中文版),2006,49(5):1145-1152. 被引量:6
  • 3Hamel A. H, Phelps' lemma, Danes'drop theorem and Ekeland's principle in locally convex spaces, Proc.Amer. Math. Soc, 2003, 131(10), 3025-3038.
  • 4Wilansky A, Modern methods in topological vector spaces, New York: McGraw-Hill, 1978.
  • 5Perez Carreras P, Bonet J, Barrelled locally convex spaces, Amsterdam: North-Holland, 1987.
  • 6Qiu J. H, σ-semi-convexity and Ekeland's variational principle, Acta Mathematica Sinica, Chinese Series,2004, 47(2): 251-258.
  • 7Hu Y. D, Men Z.Q, Convex analysis and nonsmooth analysis, Shanghai: the Publishing House of Science and Technology in Shanghai, 2000.
  • 8Danes J, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital, 1972, 6: 369-372.
  • 9Phelps R. R, Support cones in Banach spaces and their applications, Adv. Math, 1974, 13: 1-19.
  • 10Ekeland L, Nonconvex minimization problems, Bull. Amer. Mat. Soc, 1979, 1(3): 443-474.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部