期刊文献+

一类具偏差变元的三阶微分方程周期解 被引量:2

Periodic Solutions for a Kind of Third Order Differential Equation with a Deviating Argument
下载PDF
导出
摘要 利用Mahwin重合度理论研究了一类具偏变元的三阶微分方程x(t)+f(x′(t))+h(x(t)x′(t)+g(x(t-τ(t)))=p(t)的2π周期解问题,得到了周期解存在的一组充分条件. Employing the continuation theorem of coincidence degree theory developed by Mahwin,we study a kind of third order functional equation with a deviating argument as follows x″′(t)+f(x′(t))+h(x(t))x′(t)+g(x(t-τ(t)))=p(t)At last,we get a group of sufficient conditions of existence of periodic solution.
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2010年第2期111-115,共5页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金(10371006) 安徽省自然科学基金(050460103)
关键词 周期解 重合度理论 偏差变元 periodic solution theory of coincidence degree deviating argument
  • 相关文献

参考文献9

二级参考文献28

  • 1黄先开.具有时滞的保守系统的2π周期解[J].系统科学与数学,1989,9(4):298-308. 被引量:17
  • 2Gaines R. E., Mawhin J. L., Coincidence degree and nonlinear differential equations, Berlin: Springer-Verlag,1977.
  • 3Liu F., Existence of periodic solutions to a class of second order nonlinear differential equations, Acta Math.Sinica, 1990, 33(2): 260-269 (in Chinese).
  • 4Liu F., On the existence of periodic solutions of Rayleigh equation, Aeta Math. Sinica, 1994, 87(5): 639-644(in Chinese).
  • 5Huang X. K, Xiang Z. G., On the existence of 2π-periodic solution for delay Duffing equation x"(t)+g(x(t-τ))=p(t), Chinese Science Bulletin, 1994, 39(3): 201-203 (in Chinese).
  • 6Ma S. W., Wang Z. C., Yu J. S., Coincidence degree and periodic solutions of Dufling equations, Nonlinear Analysis, TMA, 1998, 84: 443-460.
  • 7Lu S. P., Ge W. G., On the existence of periodic solutions of second order differential equations with deviating arguments, Acta. Math. Sinica, 2002, 45(4): 811-818 (in Chinese).
  • 8Lu S. P., Ge W. G., Periodic solutions for a kind of second order differential equations with multiple deviating arguments, Applied Mathematics and Computation, 2003, 146(1): 195-209.
  • 9Wang G. Q., A priori bounds for periodic solutions of a delay Rayleigh equation, Applied Mathematics Letters,1999, 12: 41-44.
  • 10WANG G P.A priori bounds for periodic solutions of a delay Rayleigh equation[J].Applied Mathematics lettrs,1999,12:41-44.

共引文献74

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部