期刊文献+

基于二项分布随机增长的无标度网络 被引量:2

A Scale-free Network Evolved by Stochasitc Growth with Binomial Distribution
下载PDF
导出
摘要 提出一个具有随机增长的无标度网络模型.该模型的演化规则仍然是BA模型的增长和择优连接,但是每一时间间隔添加到网络中的边数是一个具有二项分布的随机变量.通过率方程方法,本文证明了该网络的度分布具有幂律尾部,该模型生成了一个无标度网络. In this paper, a scale-free network model with stochastic growth is proposed. The evolution rules of this model are still the growth and preferential attachment in the BA model, but the number of edges added in the network in every step is a random variable with a binomial distribution. By the rate-equation approach, we prove the degree distribution of the network has a power-law tail, and this model evolves a scale-free network.
出处 《数学研究》 CSCD 2010年第2期185-192,共8页 Journal of Mathematical Study
基金 福建省科技厅K类基金资助项目(2006F5035) 福建工程学院科研发展基金资助项目(GYZ09081)
关键词 无标度网络 BA模型 幂律尾部 随机增长 二项分布 scale-free networks BA model power-law tail stochastic growth binomial distribution
  • 相关文献

参考文献12

  • 1Albert R, Barabasi A L. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74: 47-97.
  • 2Newman M E J. The structure and function of complex networks. SIAM REVIEW (Society for Industrial and Applied Mathematics), 2003, 45: 167-256.
  • 3Erdos P, Renyi A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960, 5: 17-61.
  • 4Watts D J, Strogatz S H. Collective dynamics of small-world networks. Nature, 1998, 393: 440-442.
  • 5Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509-512.
  • 6Barabasi A L, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A, 1999, 272: 173-187.
  • 7Albert R, Jeong H, Barabasi A L. Attack and error tolerance of complex networks. Nature, 2000, 406: 378-382.
  • 8Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks. Phys. Rev. Lett., 2000, 85: 4629-4632.
  • 9Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking. Phys. Rev. Lett., 2000, 85: 4633-4636.
  • 10Shi D H, Chen Q H, Liu L. Markov chain-based numerical method for degree distributions of growing networks. Phys. Rev. E., 2005, 71: 036140.

同被引文献24

  • 1郭进利,汪丽娜.幂律指数在1与3之间的一类无标度网络[J].物理学报,2007,56(10):5635-5639. 被引量:24
  • 2ERDOS P, RINYI A. On the evolution of random graphs [ J ]. Publi- cations of the Mathematical institute of the Hungarian Academy of the Sciences, 1960(5 ) : 17-61.
  • 3WATIS D J, STROGATZ S H. Collective dynamics of small-world net- works [J]. Nature,1998,393:440-442.
  • 4BARABA.SI A L, ALBERT R. Emergence of sealing in random net- works [J]. Science,1999,286(5439) :509-512.
  • 5ALBERT R, BARABASI A L. Statistical mechanics of complex net- works [ J]. Review of Modem Physics ,2002,74 (I) :47-97.
  • 6CLAUSET A, SHALIZI C R, NEWMAN M E J. Power-law distribu- tions in empirical data[J]. SIAM Review,2009,51 (4) :661-703.
  • 7BARABASI A L. Scale-free networks: a decade and beyond [ J ]. Science ;2009,325(5939 ) :412-413.
  • 8LIU Zong-hua, LAI Ying-cheng, YE Nong,et al. Connective distribution and attack tolerance of general networks with botlt preferential and ran- dom attachments[ J]. Physics Letters A,2002,303(5-6) :337-344.
  • 9BIANCONI G,BARABASI A L. Competion and multiscalirtg in evol- ving networks[J]. Europhysics Lettors,2001,54(4) :436-442.
  • 10DOROGOYTSEY S N, MENDES J F F. Effect of the accelerating growth of communication networks on their structure [ J ], Physical Review,2001,63(2) :025101.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部