期刊文献+

在线多尺度滤波多变量统计过程的适时监测 被引量:2

Real-time monitoring for multivariate statistical process with on-line multiscale filtering
原文传递
导出
摘要 在详细分析现有MSPCA模型不足的基础上,借助在线多尺度滤波(OLMS),提出了一种多变量统计过程的在线监测方法,并将其应用于传感器故障诊断。该方法中,首先在固定窗长的数据窗口内用边缘校正滤波器对信号进行小波分解,然后用小波阈值滤波对分解的小波系数进行消噪,并借助该固定窗长的移动窗口将小波变换和自适应PCA结合起来对数据进行在线多尺度建模,从而避免了直接对信号进行消噪所造成的时间浪费,提高了故障诊断率。最后以6135D型柴油机在严重漏气下的8个振动信号的故障诊断为例进行故障分析,结果表明了所提方法的可行性和实用性。 By analyzing shortages of current MSPCA model, an on-line multi-variable statistical process monitoring method is proposed, which uses some concepts from online multi-scale filtering and can be applied to sensor fault diagnosis. In the method, wavelet decomposition is employed to the signals using edge correction filter in a fixed-length data window, and then wavelet denoising is conducted with wavelet threshold filtering. Next, an on-line multi-scale model is constructed for data combining wavelet transformation and adaptive PCA in the previous data window. This model avoids time waste in direct signal denoising and reduces time cost in multi-scale data with conventional PCA, which eventually increases accuracy in fault diagnosis. Experiments on eight vibration signals of 6135D diesel engine under severe leak condition prove the practicability and feasibility of the proposed method.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第6期128-133,共6页 Journal of Chongqing University
基金 国家自然科学基金资助项目(60974090) 教育部博士点基金资助项目(200806110021)
关键词 快速离散小波变换 在线多尺度滤波 多尺度分析 自适应主元分析 fast discrete wavelet transformation online multiscale filtering multiscale analysis adaptive PCA
  • 相关文献

参考文献15

  • 1BAKSHI B R. Multiscale PCA with application to multivariate statislical process monitoring [J]. American Institute of Chemical Engineering Journal, 1998, 44(7): 1596 -1610.
  • 2刘育明,梁军,胡斌,叶鲁彬,石向荣.一种基于多尺度分析的多变量统计过程监测方法[J].化工学报,2009,60(4):952-958. 被引量:2
  • 3范少荟,文成林.基于滑动中值滤波的多尺度主元分析方法[J].高技术通讯,2008,18(3):271-276. 被引量:2
  • 4REIS M S, SARAIVA P M. Multiscale statistical process control using wavelet packets [J]. AICHE Journal, 2008,54(9) :2366 -2378.
  • 5XU T. Sensor fault diagnosis and data reconstruction based on MSPCA[C]//Proceedings of the 27th Chinese Control Conference, July 16 18, 2008, Kunming, China. [S. l]. IEEE, 2008:30-33.
  • 6GAO Q, HAN M, HU S L, et al. Design of fault diagnosis system of FPSO production process based on MSPCA[C]// 25th International Conference on Information Assurance and Security, IAS 2009, August 18 20, 2009, Xi'an, China. [S. l]. IEEE, 2009: 729-732.
  • 7耿卫国,徐涛,王祁.基于MSPCA的液体火箭发动机试车台氢供应系统传感器故障诊断方法[J].宇航学报,2006,27(6):1142-1146. 被引量:8
  • 8REISM S, SARAIVA P M. Multiscale statistical process control with multiresolution data[J]. AICHE Journal,2006,52(6) : 2107-2119.
  • 9REISM S, SARAIVA P M. Generalized multiresolution decompsition framework for the analysis of industrial data with uncertainly and missing values[J]. Industrial and Engineering Chemistry Research, 2006, 45(18): 6330- 6338.
  • 10孙美红,孙巍,赵劲松,张浩,张佳.多变量统计方法监测化工过程的缓变故障[J].计算机与应用化学,2009,26(10):1228-1232. 被引量:6

二级参考文献35

  • 1李文军,张洪坤,程秀生.基于小波和神经网络的传感器故障诊断[J].吉林大学学报(工学版),2004,34(3):491-495. 被引量:17
  • 2徐涛,王祁.基于小波变换的多尺度主元分析在传感器故障诊断中的应用[J].测试技术学报,2006,20(5):418-423. 被引量:6
  • 3Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE Journal, 1998, 44 (7): 1596-1610
  • 4Misra M, Yue H H, Qin S J, Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Computers & Chemical Engineering, 2002, 26 ( 9 ): 1281-1293
  • 5Aradhye H B, Bakshi B R, Davis J F, Ahalt S C. Clustering in wavelet domain: a multiresolution ART network for anomaly detection. AIChE Journal, 2004, 50(10): 2455-2466
  • 6Yoon S, MacGregor J F. Principal-component analysis of multiscale data for process monitoring and fault diagnosis. AIChE Journal, 2004, 50 (11): 2891-2903
  • 7Aradhye H B, Bakshi B R, Strauss R A, Davis J F. Multiscale SPC using wavelets: theoretical analysis and properties. AIChEJournal, 2003, 49 (4):939-958
  • 8Reis M S, Saraiva P M. Generalized multiresolution decomposition frameworks for the analysis of industrial data with uncertainty and missing values. Industrial and Engineering Chemistry Research, 2006, 45 ( 18 ): 6330-6338
  • 9Reis M S, Saraiva P M. Multiscale statistical process control with multiresolution data. AIChE Journal, 2006, 52 (6): 2107-2119
  • 10Reis M S, Saraiva P M, Bakshi B R. Multiscale statistical process control using wavelet packets. AIChE Journal, 2008, 54 (9): 2366-2378

共引文献14

同被引文献19

  • 1MAO XinYong,LIU HongQi,LI Bin.Time-frequency analysis and detecting method research on milling force token signal in spindle current signal[J].Science China(Technological Sciences),2009,52(10):2810-2813. 被引量:11
  • 2CUI P L,LI J H,WANG G Z.Improved kernel principal component analysis for fault detection.Expert Systems with Applications,2008,34(2):1210-1219.
  • 3LEE J M,YOO C K,LEE I B.Statistical process monitoring with independent component analysis.Journal of Process Control,2004,14(5):467-485.
  • 4LEE J M,YOO C K,LEE I B.Statistical monitoring of dynamic processes based on dynamic independent component analysis.Chemical Engineering Science,2004,59 (14):2995-3006.
  • 5CHIANG L H,RUSSELl E L,B RAATZ R D.Fault detection and diagnosis in industrial systems.London:Springer-Verlag,2001.
  • 6DONOHO D L,JOHNSTONE I.Wavelet shrinkage asymptopia.Journal of Royal Statistical Society,1995,57 (2):301-369.
  • 7NOUNOU M N,BHAVIK R.Bakshi.On-line multiscale filtering of random and gross errors without process models.AIChE,1995,45 (5):1041-1058.
  • 8LEE C,CHOI S W,LEE I B.Variable reconstruction and sensor fault identification using canonical variate analysis.Process Control,2006,16(7):747-761.
  • 9HSU Chun-Chin,CHEN,Mu-Chen CHEN.Long-Sheng Integrating independent component analysis and support vector machine for multivariate process monitoring.Computers & Industrial Engineering,2010,59(1):145-156.
  • 10LEE Jong-Min,QIN S Joe.Fault detection and diagnosis based on modified independent component analysis.AIChE,2006,52 (10):3501-3504.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部