期刊文献+

基于Unscented卡尔曼滤波新息的多变量序贯概率比检验故障检测方法 被引量:2

Fault detection method based on multi-variable sequential probability ratio test of Unscented Kalman filter innovation
下载PDF
导出
摘要 针对非线性多变量过程监控问题,提出一种基于预测新息的多变量序贯概率比检验(SPRT)方法。首先利用Unscented卡尔曼滤波(UKF)基于正常过程模型预测输出值,将预测输出值与过程测量得到的实际输出值对比产生预测新息,然后引入多变量SPRT方法分析多元新息的统计特性,构造对数概率似然比判决函数和判决规则,监控过程的运行状态并对故障状态进行报警。在连续搅拌反应器上的仿真应用结果表明,所提出的故障检测方法能够有效实现过程监控,比传统的残差加权平方和方法误报率低、检测速度快。 A multi-variable sequential probability ratio test(SPRT)method based on predictive innovation was proposed for nonlinear multi-variable process monitoring problem.Firstly Unscented Kalman filter(UKF) is conducted to predict outputs using normal process model,the predictive innovation is generated by comparing predictive outputs and the actual ones which are sensed from the process.Then multi-variable SPRT method is introduced to analyze the statistical characteristics of the multi-dimension innovation.Decision function and decision rules with log-probability likelihood ratio are constructed to monitor the status of the process and signal the faults.The simulation results on continuous stirred tank reactor show that the proposed method can monitor process effectively.Compared with the traditional weighted-sum squared residual method,the proposed method has low false alarm rate and detects faults quickly.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期165-169,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 山东省自然科学基金项目(Y2007G49)
关键词 多变量序贯概率比检验 UNSCENTED卡尔曼滤波 故障检测 新息 multi-variable sequential probability ratio test Unscented Kalman filter fault detection innovation
  • 相关文献

参考文献11

二级参考文献40

共引文献47

同被引文献14

  • 1李炜,朱芸,毛海杰,李应启.SPRT检验法和小波变换法在管道泄漏检测中的应用[J].计算机测量与控制,2005,13(9):903-904. 被引量:8
  • 2AHN H,YU W.Environmental-adaptive RSSI-based Indoor localization[J].IEEE Trans Automation Science and Engineering,2009,6(4):626-633.
  • 3MAO G,FIDAN B,ANDERSON B.Wireless sensor network localization techniques[J].Computer Networks,2007,51:2529-2553.
  • 4GEZICI S.A survey on wireless position estimation[J].Wireless Personal Communications,2008,44(3):263-282.
  • 5TATEISHI K,LKEGAMI T.Estimation method of attenuation constant during localization in RSSI[C] //Proceedings of 2008 International Symposium on Communications and Information Technologies.Vientiane:IEEE,2008:482-487.
  • 6LU Y,LAI C,HU C,et al.Path loss exponent estimation for indoor wireless sensor positioning[J].KSII Transactions on Internet and Information System,2010,4(3):243-256.
  • 7LI X.RSS-based location estimation with unknown pathloss model[J].IEEE Trans Wireless Communication,2006,5(12):3626-3633.
  • 8YAMADA I,OHTSUKI T.An indoor location estimation method by maximum likelihood using RSSI;proceedings of 3rd Sensor Network Conference[C」.Tokyo:IEEE,c2006:37-41.
  • 9ZEMEK R,ANZAI D,HARA S,et al.RSSI-based localization without a prior knowledge of channel model parameters[J].International Journal of Wireless Information Networks,2008,15:128-136.
  • 10RAPPAPORT T S.Wireless communications:principles and practice[M].2nd ed.Upper Saddle River:Prentice Hall,2001:71-74.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部