期刊文献+

偏微分方程广义分量解的对称方法

SYMMETRY METHOD OF GENERALIZED SEPARATION OF VARIBLES FOR PDEs
下载PDF
导出
摘要 本文对已知的微分算子,构造一个在该微分算子下不变的有限维线性空间,利用此空间的基得到了具有三个或三个以上自变量的偏微分方程的广义分离变量解. In this paper,we construct a finite-dimensional invariant linear spaces under a given differential operator. By using the basis of the spaces ,we obtain the generalized separation of variables solution for partial differential equations of three or more variables.
出处 《内蒙古工业大学学报(自然科学版)》 2010年第2期86-92,共7页 Journal of Inner Mongolia University of Technology:Natural Science Edition
关键词 偏微分方程 线性不变空间 广义分量解 Lie-Bcklund对称 Partial differential equation (s) Linnet invariant spaces Generalized separation of variables solutions Lie-Blacklund Symmetry
  • 相关文献

参考文献2

二级参考文献6

  • 1Ablowitz M J,Clarkson P A. Soliton,Nonlinear Evolution Equations and Inverse Scattering [M]. Cambridge Univ,Press, 1991.
  • 2Matveev V B.Salle M A. Darboux Transformations and Solitons [M]. Springer.Berlin,1991.
  • 3Weiss J,Tabor M.Carnevale G [J]. J. Math. Phys. ,1983,24: 13.
  • 4Hereman W,Takaoka M. [J]. J. Phys. A.1990,23:4805.
  • 5Weiss J. [J]. J. Math. Phys. 1984,24:13.
  • 6吴文俊.ON THE FOUNDATION OF ALGEBRAIC DIFFERENTIAL GEOMETRY[J].Systems Science and Mathematical Sciences,1989,2(4):289-312. 被引量:21

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部