期刊文献+

粗糙集和FSVM结合的雷达信号识别法 被引量:1

A Radar Signal Recognition Algorithm based on Rough Sets and Fuzzy Support Vector Machine
下载PDF
导出
摘要 结合粗糙集的属性约简和支持向量机的分类机理,研究了一种混合算法,即应用粗糙集的属性约简过程作为预处理器,可以把冗余的属性及值和冲突的对象从决策表中删去,但不损失任何有效信息;由于传统支持向量机在多分类问题时出现的不可分区域现象,使用了模糊支持向量机进行后面的分类建模和预测,使得训练时间大大缩短和分类性能显著提高。将这种混合方法应用到雷达信号识别中,仿真实验证明该方法是有效的。 A mixed algorithm based on attribute reduction of Rough Sets(RS) and classification principles of Support Vector Machine(SVM) is researched in this paper.Firstly,the attribute reduction of RS has been applied as preprocessor so that the redundant attributes,values and conflicting objects can be deleted from decision table but the efficient information remains lossless.For the unclassifiable regions existing in the problem of multiclass with SVM,fuzzy SVM is applied to settle this problem and be used in the succedent classification and forecast,which makes the training time reduced and classification performance enhanced greatly.The mixed method is used for radar signal recognition in this paper,simulation experiments and their results show this method is effective.
作者 陈婷 罗景青
出处 《火力与指挥控制》 CSCD 北大核心 2010年第6期76-80,共5页 Fire Control & Command Control
关键词 粗糙集 支持向量机 核函数 属性约简 模糊支持向量机 rough set SVM kernel function attribute reduction FSVM
  • 相关文献

参考文献8

  • 1Vapnik V N. Statistical Learning Theory[M]. New York: Wiley, 1998.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 3Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data [M].Kluwer Academic Publishers, 1991.
  • 4朱志宇,张冰,刘维亭.基于模糊支持向量机的语音识别方法[J].计算机工程,2006,32(2):180-182. 被引量:12
  • 5苗夺谦,范世栋.知识的粒度计算及其应用[J].系统工程理论与实践,2002,22(1):48-56. 被引量:174
  • 6李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7Friedbelm S. Hierarchical Support Vector Machines for Multi-class Pattern Recognition [C]//Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000.
  • 8Takuya I, Shigeo A. Fuzzy Support Vector Machines for Pattern Classification [J].IJCNN, 2001,17(4) : 1449-1455.

二级参考文献9

共引文献2529

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部