期刊文献+

拟常曲率空间中具常平均曲率的闭超曲面 被引量:1

Closed Hypersurfaces in Quasi-constant Curvature Space with Constant Mean Curvature
下载PDF
导出
摘要 设(Nn+1,g)是n+1维单连通完备黎曼流形,其黎曼曲率张量取如下形式:KABCD=a(gACgBD-gADgBC)+b(gACλBλD-gADλBλC+gBDλAλC-gBCλAλD),则称Nn+1为拟常曲率空间。又设M是Nn+1中具常平均曲率的连通闭超曲面,S为M的第二基本形式模长的平方。若Nn+1的生成元切于M,则(1)当S<2(n-1)^(1/2)(a+b-b)时,M是全脐超曲面;(2)当S=2(n-1)^(1/2)(a+b-b)时,M是全脐超曲面或球面Sn+1(a)中的H(r)-环面S1(r)×Sn-1(t)。若Nn+1的生成元法于M,则(1)当S=2(n-1)^(1/2)a时,M是全脐超曲面;(2)当S=2(n-1)^(1/2)a时,M是全脐超曲面或Nn+1中的H(r)-环面S1(r)×Sn-1(t)。 Assume that ( N^n+1, g) be a n + 1-dimensional complete and simple connected Riemannian manifold and its Riemannian curvature tensors KABCD=a(gAcgBD-gADgBC)+b(gACλBλD-gADλBλC+gBDλAλc-gBCλAλD), then Nn+1 is said to a quasi-constant curvature space. Let M be a connected and closed hypersurface in a quasi-constant curvature Nn+1 with constant mean curvature, S be the square of the length of second fundamental form of M. If the generating elements of Nn+1 are tangent to M, then( 1 )when S〈2√n-1(a+b-|b|),M is a umbilical hypersurface; (2)whenS=2√(a+b-|b|)M is a umbilical hypersurface or a H(r)-torus S1(r)×Sn-1(t) of s^n+1(a).If the generating elements of Nn+ 1 are normal to M, then ( 1 ) when S〈2√n-1a ,, M is a umbilical hypeurface;(2) when S〈2√n-1a, M is a umbilical hypersufface or a H( r)-torus s1(r)×N^n-1(t) of N^n+1.
作者 吴泽九
出处 《华东交通大学学报》 2010年第3期83-87,共5页 Journal of East China Jiaotong University
基金 江西省教育厅科研项目(GJJ453) 华东交通大科学技术研究基金项目(06ZKJC04)
关键词 拟常曲率空间 常平均曲率 超曲面 全脐 quasi-constant curvature space constant mean curvature hypersurface totally umbilical
  • 相关文献

参考文献7

二级参考文献15

  • 1宋卫东.关于具有常平均曲率的超曲面[J].数学研究,1998,31(1):40-43. 被引量:2
  • 2Bai Z G. Minimal submanifolds in Riemannian manifold of quasi constant curvature[J]. Chin Ann of Math,1988,9B(1):56-60.
  • 3Zhang Huahou. Hypersurfaces in sphere with constant mean curvature[J]. Proceediugs of AMS, 1997, 125:1193-1196.
  • 4Yau S T. Submanifolds with constant mean curvature Ⅰ,Ⅱ[J]. Amer J Math, 1974, 96;1975, 97.
  • 5Okumura M. Hypersurface and pinching problem on the second fundamental tensor[J]. Amer J Math, 1974, 96:207-213.
  • 6Cai K R. First eigenvatue of submanifolds in Euclidean space[J]. Internat J Math & Math Sci,2000,24(1):43-48.
  • 7Xu H W. On closed minimal submanifolds in pinched Riemannian manifolds[J]. Trans Amer Math Soc, 1995, 347:1743-1751.
  • 8Hou, Z. H. Hypersurfaces in a sphere with constant mean curvature [ J]. Proc. of Amer. Math. Soc., 1997,125 (4) : 1193 - 1196.
  • 9Alencar H, Do Canno M. Hwersurfaces with constant mean curvature in spheres[ J ]. Proc Amer Math Soc., 1994, (120):1223- 1229.
  • 10蔡开仁.欧氏空间中闭子流形的拓扑.数学年刊:A辑,1987,8(2):234-241.

共引文献16

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部