摘要
设(Nn+1,g)是n+1维单连通完备黎曼流形,其黎曼曲率张量取如下形式:KABCD=a(gACgBD-gADgBC)+b(gACλBλD-gADλBλC+gBDλAλC-gBCλAλD),则称Nn+1为拟常曲率空间。又设M是Nn+1中具常平均曲率的连通闭超曲面,S为M的第二基本形式模长的平方。若Nn+1的生成元切于M,则(1)当S<2(n-1)^(1/2)(a+b-b)时,M是全脐超曲面;(2)当S=2(n-1)^(1/2)(a+b-b)时,M是全脐超曲面或球面Sn+1(a)中的H(r)-环面S1(r)×Sn-1(t)。若Nn+1的生成元法于M,则(1)当S=2(n-1)^(1/2)a时,M是全脐超曲面;(2)当S=2(n-1)^(1/2)a时,M是全脐超曲面或Nn+1中的H(r)-环面S1(r)×Sn-1(t)。
Assume that ( N^n+1, g) be a n + 1-dimensional complete and simple connected Riemannian manifold and its Riemannian curvature tensors KABCD=a(gAcgBD-gADgBC)+b(gACλBλD-gADλBλC+gBDλAλc-gBCλAλD), then Nn+1 is said to a quasi-constant curvature space. Let M be a connected and closed hypersurface in a quasi-constant curvature Nn+1 with constant mean curvature, S be the square of the length of second fundamental form of M. If the generating elements of Nn+1 are tangent to M, then( 1 )when S〈2√n-1(a+b-|b|),M is a umbilical hypersurface; (2)whenS=2√(a+b-|b|)M is a umbilical hypersurface or a H(r)-torus S1(r)×Sn-1(t) of s^n+1(a).If the generating elements of Nn+ 1 are normal to M, then ( 1 ) when S〈2√n-1a ,, M is a umbilical hypeurface;(2) when S〈2√n-1a, M is a umbilical hypersufface or a H( r)-torus s1(r)×N^n-1(t) of N^n+1.
出处
《华东交通大学学报》
2010年第3期83-87,共5页
Journal of East China Jiaotong University
基金
江西省教育厅科研项目(GJJ453)
华东交通大科学技术研究基金项目(06ZKJC04)
关键词
拟常曲率空间
常平均曲率
超曲面
全脐
quasi-constant curvature space
constant mean curvature
hypersurface
totally umbilical