期刊文献+

基于斑点方差估计的非下采样Contourlet域SAR图像去噪 被引量:16

SAR Image Despeckling Based on the Estimation of Speckle Variance in Nonsubsampled Contourlet Domain
下载PDF
导出
摘要 合成孔径雷达(SAR)图像固有的相干斑噪声严重影响图像质量,使得SAR图像的自动解译十分困难.本文联合SAR图像的统计特性和非下采样Contourlet对SAR图像细节信息的良好刻画能力,提出一种新的非下采样Contourlet域SAR图像去噪算法,通过估计到的各个高频方向子带的斑点噪声方差和变换系数模值的局部均值,对非下采样Contourlet变换系数进行判定,保留信号系数,抑制斑点噪声系数,实现SAR图像去噪.仿真实验结果表明,本文方法在斑点抑制的同时可以有效保持细节信息. Synthetic aperture radar(SAR) images are inherently degraded by speckle noise,that severely affects the image qualities and makes the automatic interpretation of the image data very difficult.Combine the SAR image statistical property with the favorable capability of nonsubsampled contourlet transform on describing SAR images detail information,a novel SAR image despeckling method is presented.We estimate the speckle variance in each high-frequency directional subband.The local directional statistical information and the estimated speckle variance is used to classify the nonsubsampled contourlet transform coefficients as signal and noise coefficients.The SAR image despeckling is implemented by retaining signal coefficients and restraining noise coefficients.Experimental results demonstrate that the proposed despeckling method can preserve detail information effectively and reduce the speckle noise at the same time.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1328-1333,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60972148 No.60702062 No.60971128 No.60803097) 国家863高技术研究发展计划(No.2008AA01Z125 No.2009AA12Z210) 国家部委科技项目(No.XADZ2008159 No.51307040103) 教育部重点项目(No.108115) 国家教育部博士点基金(No.200807010003) 国家973重点基础研究发展规划(No.2006CB705707) 中央高校基本科研业务费专项资金(No.JY10000902001 No.JY10000902038 No.JY10000902032)
关键词 SAR图像去斑 非下采样CONTOURLET变换 小波变换 SAR image despeckling nonsubsampled contourlet transform wavelet transform
  • 相关文献

参考文献12

二级参考文献81

共引文献299

同被引文献188

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2王隽,杨劲松,黄韦艮,王贺,陈鹏.多视处理对SAR船只探测的影响[J].遥感学报,2008,12(3):399-404. 被引量:3
  • 3李世飞,董福安,伍友利,张志.各向异性扩散滤波器的迭代停止准则[J].空军工程大学学报(自然科学版),2005,6(5):70-72. 被引量:3
  • 4李迎春,孙继平,付兴建.基于小波变换的红外图像去噪[J].激光与红外,2006,36(10):988-991. 被引量:33
  • 5焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
  • 6Kumar A. Computer-Vision-Based Fabric Defect Detection: A Survey [ J]. IEEE Trans on Industrial Electronics, 2008, 55(1): 348 -363.
  • 7Kumar A, Pang G K H. Defect Detection in Textured Materials Using Gabor Filters [ J]. IEEE Trans on Industry Applications. 2002, 38(2): 425-440.
  • 8Zeng Peifeng, Hirata T. On-Loom Fabric Inspection Using Multi-Scale Differentiation Filtering [ C]//Proc of IEEE Industry Application Conference. Pittsburgh: IEEE, 2002: 320-326.
  • 9Chen Shuyue, Feng Jun, Zou Ling. Study of Fabric Defects Detection Through Gabor Filter Based on Scale Transformation [ C]//Proc of International Conference on Image Analysis and Signal Processing. Xiamen: IEEE, 2010: 97-99.
  • 10Cohen F S, Fan Z, Attali S. Automated Inspection of Textile Fabrics Using Textural Models [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13( 8): 803-808.

引证文献16

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部