期刊文献+

能量回馈型电力电子负载的控制方法 被引量:13

Control Method of Energy Feedback Power Electronic Load
原文传递
导出
摘要 提出一种新颖的基于电压源型变流器(voltage source converter,VSC)能量回馈型电力电子负载主电路拓扑。其由背靠背H桥构成,负荷侧变流器采用H桥级联以提高电压等级,并网侧变流器采用H桥并联以提高电流容量。网侧变流器和负荷侧变流器采用解耦控制方法,负荷侧变流器采用PQ解耦控制模拟负载消耗功率;网侧变流器采用直流电压稳定并保证并单位功率因数并网,并将负荷侧吸收的有功功率馈送回电网。建立基于PSCAD/EMTDC软件的电力电子负载仿真模型,设计制作一台400V/100kVA低压原理样机进行实验验证,仿真和实验结果表明提出的电力电子负载的主电路拓扑和控制方法是有效可行的。 This paper proposed a novel main circuit topology of energy feedback power electronic load based on voltage source converter.The main circuits compose of back-to-back H-bridges,the load side converter adopt H-bridges series connected to improve voltage rating.The grid side converter adopt H-bridges parallel connected by multi windings transformer to enlarger current capacitor.The two side converters is decoupling controlled,the load side converter is controlled by active power and reactive power decoupling control to simulate the power consumed by load.The gird side converter is adopted DC voltage stable and unit power factor grid-connected control,and feedback the active power absorbed from the load side to the grid side.The simulation model of power electronic load is fulfilled by the platform of PSCAD/EMTDC,and the low voltage 400 V/100 kVA prototype is controlled and designed for experimental research.The simulation and experimental results verify that the proposed main circuit topology and control strategy is effective for controllable power electronic load.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第18期62-66,共5页 Proceedings of the CSEE
基金 "十一五"国家科技支撑计划重大项目(2007BAA12B03)~~
关键词 电压源变流器 电力电子负载 控制方法 解耦控制 voltage source converter(VSC) power electronic load(PEL) control method decoupling control
  • 相关文献

参考文献19

  • 1Chaturvedi D K, Mali O P. Neurofuzzy power system stabilizer[J]. IEEE Trans. on Energy Conversion, 2008, 23(3): 887-894.
  • 2Mithulananthan N, Canizares C A, Reeve J, et al. Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations[J]. IEEE Trans. on Power Systems, 2003, 18(2): 786-792.
  • 3Mishra S. Neural-network-based adaptive UPFC for improving transient stability performance of power system[J]. IEEE Trans. on Neural Networks, 2006, 17(2): 461-470.
  • 4Haque M H. Evaluation of first swing stability of a large power system with various FACTS devices[J]. IEEE Trans. on Power Systems, 2008, 23(3): 1144-1151.
  • 5Varma R K, Auddy S, Semsedini Y. Mitigation ofsubsynchronous resonance in a series-compensated wind farm using FACTS controllers[J]. IEEE Trans. on Power Delivery, 2008, 23(3): 1645-1654.
  • 6Chong Han, Huang A Q, Baran M E, at al. STATCOM impact study on the integration of a large wind farm into a weak loop power system[J]. IEEE Trans. on Energy Conversion, 2008, 23(1 ): 226-233.
  • 7Hochgraf C, Lasseter R H. Statcom controls for operation with unbalanced voltages[J]. IEEE Trans. on Power Delivery, 1998, 13(2): 538-544.
  • 8Griffo A, Lauria D. Two-leg three-phase inverter control for STATCOM and SSSC applications[J]. IEEE Trans. on Power Delivery, 2008, 23(1): 361-370.
  • 9SrivastavaKN, SrivastavaSC. Elimination ofdynamic bifurcation and chaos in power system using FACTS devices[J]. IEEE Trans. on Fundamental Theory and Applications, 1998, 45(1): 72-78.
  • 10VarmaR K, Auddy S, Semsedini Y. Mitigation ofsubsynchronous resonance in a series-compensated wind farm using FACTS controllers[J]. IEEE Trans. on Power Delivery, 2008, 23(3): 1645 - 1654.

二级参考文献66

共引文献603

同被引文献93

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部