期刊文献+

基于改进蚁群算法的装配序列规划 被引量:33

Assembly sequence planning based on improved ant colony algorithm
下载PDF
导出
摘要 针对装配序列规划问题,分析了基本蚁群系统的不足,提出了面向装配序列规划的改进蚁群算法,来获得最优或次最优的装配序列。改进蚁群算法中,将装配操作约束作为启发式信息引入状态转移概率中,通过获取零部件之间的装配关系设定可行转移范围。通过信息素残留系数的动态变化和影响转移概率的α、β参数的动态设置,提高了蚁群的收敛速度并有效地避免了其陷入局部最优解。通过实例验证了改进算法的有效性。 Aiming at Assembly Sequence Planning(ASP)problem,shortcomings of basic ant system were analyzed,an improved Ant Colony Algorithm(ACA)oriented to ASP was proposed to obtain optimal or near optimal assembly sequence.In this algorithm,assembly operation constraint was introduced into the state transfer function as heuristic information.And feasible transition area was set up by obtaining assembly relationship of the parts.By dynamic change of pheromohe trail persistence and dynamic setting of parameters α and β,the convergence speed of ACA was improved and the local optimization was avoided.Finally,the effectiveness was verified by an example.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2010年第6期1189-1194,共6页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2006AA04Z228)~~
关键词 蚁群算法 装配序列规划 信息素 优化 ant colony algorithm assembly sequence planning pheromone optimization
  • 相关文献

参考文献12

  • 1HONG D S,CHO H S.A neural network based computational scheme for generating optimized robotic asmmbly sequellce[J].EngineeringApplication Artifical Intelligence,1995,8(2):129-145.
  • 2HOMEM DE MELLO L S.A correct and complete algorithm for the generation of mechanical assembly sequences[J].IEEE Transactions on Robotics and Automation,1991,7(2):228-240.
  • 3LAZZERINI B,MARCELLONI F.A genetic algorithm for generation optimal assembly plans[J].Artificial Intelligence in Engineering,2000,14(4):319-329.
  • 4WANG J F,LIU J H,ZHONG Y F.A novel ant colony algorithm for assembly sequence planning[J].The International Journal of Advanced Manufacturing Technology,2005,25(11):1137-1143.
  • 5LEVITIN G,RUBINOVITZ J,SHNITS B.A genertic algorithm for robotic assembly line balancing[J].European Journal of Operational Research,2006,168(3):811-825.
  • 6DORIGO M,MANIEZZO V,COl,COLORNI A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,1996,26(1):29-41.
  • 7FAILLI F,DINI G.Ant colony systems in assembly planning[C] //Proceedings of the 2nd CIRP Intelligent Computation in Manufacturing Engineering.New York,N.Y.,USA:CIRP,2000:227-232.
  • 8谢龙,付宜利,马玉林.基于蚁群算法的装配序列生成策略[J].哈尔滨工业大学学报,2006,38(2):180-183. 被引量:9
  • 9吴志寒.利用试验设计方法优化蚁群算法参数问题[J].计算机与数字工程,2007,35(9):49-51. 被引量:2
  • 10徐红梅,陈义保,刘加光,王燕涛.蚁群算法中参数设置的研究[J].山东理工大学学报(自然科学版),2008,22(1):7-11. 被引量:27

二级参考文献38

  • 1谢龙,付宜利,马玉林.基于复合装配图进行装配序列规划的研究[J].计算机集成制造系统,2004,10(8):997-1002. 被引量:9
  • 2王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 3刘晓冰,刘彩燕,马跃,蒙秋男.基于分层实例推理的混合型行业工艺设计系统研究[J].计算机集成制造系统,2005,11(7):941-946. 被引量:18
  • 4刘乃文,王奎峰.蚁群优化算法及其应用[J].山东师范大学学报(自然科学版),2006,21(2):30-32. 被引量:5
  • 5DE FAZIO T L, WHITNEY D E. Simplified generation of all mechanical assembly sequences [J]. IEEE Journal of Robotics and Automation, 1987,3:640- 658.
  • 6CHANG K, WEE W G. A knowledge - based planning system for mechanical assembly using robots [J]. IEEE Expert, 1988, 3(1):18 - 30.
  • 7LAZZERINI B, MARCELLONI F. A genetic algorithm for generating optimal assembly plans [J]. Artificial Intelligence in Engineering. 2000,14 (4) : 319 - 329.
  • 8DORIGO M, GAMBARDELLA L M. Ant colonies for the traveling salesman problem [J]. BioSystems, 1997,43:73-81.
  • 9STUTZLE T, HOOS H H. MAX--MIN Ant System[J].Future Generation Computer Systems. 2000,16 : 889 - 914.
  • 10GUTJAHR W J. A graph - based ant system and its convergence [J]. Future Generation Computer Systems,2000,16:873-888.

共引文献95

同被引文献262

引证文献33

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部