期刊文献+

单变量均匀静态奇数点细分格式的构造和连续性分析 被引量:2

Construction and continuity analysis of uniform stationary univariate odd point subdivision schemes
下载PDF
导出
摘要 单变量细分格式中关于偶数点有二重和三重的插值格式,而关于奇数点只有三点三重插值格式。文章构造了五点三重和七点三重插值格式,并利用单变量均匀稳定细分格式Ck连续的充要条件,对其连续性及精度进行了分析,同时将其与偶数点细分格式进行了比较,文中的构造方法对精度的提高是有效的。 In univariate subdivision schemes, there are arity-2 and arity-3 interpolating even-point schemes, but in view of an odd number of control points, there are only arity-3 interpolating 3-point schemes. In this paper, arity-3 interpolating 5 point and 7-point schemes are constructed. Using the necessary and sufficient conditions for C-continuity of uniform stationary subdivision schemes, the continuity and accuracy of the schemes are presented. Compared with even-point subdivision schemes, the method proposed in this paper is effective in improving the accuracy of the schemes.
作者 谭晔 江平
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期925-928,共4页 Journal of Hefei University of Technology:Natural Science
基金 高等学校博士学科点专项科研基金资助项目(2008JYXJ0828) 安徽省自然科学基金资助项目(090416232)
关键词 细分 插值格式 连续性 subdivision interpolating scheme continuity
  • 相关文献

参考文献10

  • 1Chaikin G M.An algorithm for high speed curve generation[J].Computer Graphics and Image Processing,1974,3(4):346-349.
  • 2Dyn N,Gregory J A,Levin D.A 4-point interpolatory subdivision scheme for curve design[J].Computer Aided Geometric Design,1987,4(4):257-268.
  • 3Deslauriers G,Dubuc S.Symmetric iterative interpolation processes[J].Constructive Approximation,1989,5(1):49-68.
  • 4Hassan M F,Dodgson N A.Ternary and three-point univariate subdivision schemes[C] //Cohen A,Merrien J L,Schumaker L L.Curve and Surface Fitting:Saint-Malo 2002.Brentwood:Nashboro Press,2003:199-208.
  • 5Hassan M F,Ivrissimitzis I P,Sabin M A.An interpolating 4-point C2ternary stationary subdivision scheme[J].Computer Aided Geometric Design,2002,19(1):1-18.
  • 6黄章进.单变量均匀静态细分格式的连续性分析和构造[J].软件学报,2006,17(3):559-567. 被引量:7
  • 7Dyn N,Gregory J A,Levin D.Analysis of uniform binary subdivision scheme for curve design[J].Constructive Approximation,1991,7(2):127-147.
  • 8Dyn N,Levin D,Micchelli C A.Using parameters to increase smoothness of curves and surfaces generated by subdivision[J].Computer Aided Geometric Design,1990,7(2):129-140.
  • 9Dyn N.Analysis of convergence and smoothness by the formalism of Laurent polynomials[C] //Iske A,Quak E,Floater M S.Tutorials on Multiresolution in Geometric Modelling.New York:Springer-Verlag,2002:51-64.
  • 10Romani L.Classifying uniform univariate refinement schemes and predicting their behaviour[C] //Dodgson N A,Floater M S,Sabin M A.Proc of the MINGLE,2003:123-134.

二级参考文献12

  • 1Dyn N,Gregory JA,Levin D.A 4-point interpolatory subdivision scheme for curve design.Computer Aided Geometric Design,1987,4(4):257-268.
  • 2Deslauriers G,Debuc S.Symmetric iterative interpolation processes.Constructive Approximation,1989,5(1):49-68.
  • 3Kobbelt L.√3 -Subdivision.In:Proc.of the SIGGRAPH 2000.New York:ACM Press,2000.103-112.
  • 4Hassan MF,Dodgson NA.Ternary and three-point univariate subdivision schemes.In:Cohen A,Merrien JL,Schumaker LL,eds.Curve and Surface Fitting:Saint-Malo 2002.Brentwood:Nashboro Press,2003.199-208.
  • 5Hassan MF,Ivrissimitzis IP,Sabin MA.An interpolating 4-point C2 ternary stationary subdivision scheme.Computer Aided Geometric Design,2002,19(1):1-18.
  • 6Dyn N,Gregory JA,Levin D.Analysis of uniform binary subdivision scheme for curve design.Constructive Approximation,1991,7(2):127-147.
  • 7Dyn N,Levin D,Micchelli CA.Using parameters to increase smoothness of curves and surfaces generated by subdivision.Computer Aided Geometric Design,1990,7(2):129-140.
  • 8Dyn N.Analysis of convergence and smoothness by the formalism of Laurent polynomials.In:Iske A,Quak E,Floater MS,eds.Tutorials on Multiresolution in Geometric Modelling.New York:Springer-Verlag,2002.51-64.
  • 9Romani L.Classifying uniform univariate refinement schemes and predicting their behaviour.In:Dodgson NA,Floater MS,Sabin MA,eds.Proc.of the MINGLE 2003.123-134.
  • 10Ivrissimitzis IP,Dodgson NA,Hassan MF,Sabin MA.On the geometry of recursive subdivision.Int'l Journal of Shape Modeling,2002,8(1):23-42.

共引文献6

同被引文献12

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部