期刊文献+

基于决策树的海战场舰艇意图识别 被引量:11

Naval Vessel Intention Recognition Based on Decision Tree
下载PDF
导出
摘要 通过对以往战场舰艇意图识别经验的学习,采用信息熵理论建立舰艇意图识别决策树。通过对舰艇意图识别历史数据的分析,将识别错误的元组更正后加入历史信息库,重新建立决策树,使该方法具有一定的自学能力,并通过实例进行仿真分析。结果表明,该方法具有一定的自学能力,意图识别的准确率会随着决策树的学习逐渐提高,在一定程度上克服战场目标意图的欺骗性。 Decision trees can be created by using information entropy through the research on vessel intention recognition experience. Through analyzing the intention recognition historical data, correct the error meta-groups and add them to the historical information base and reconstruct decision tree. The method has self-study ability and can carry out simulation analyze based on example. The results show that the method has self-study ability, the intention recognition accuracy rate will improve by the learning and overcome the cheating of battlefield target intention in some degree.
出处 《兵工自动化》 2010年第6期44-46,53,共4页 Ordnance Industry Automation
关键词 信息熵 决策树 海战场 意图识别 Information entropy Decision tree Naval battlefield Intention recognition
  • 相关文献

参考文献8

二级参考文献83

共引文献52

同被引文献120

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部