摘要
求解并给出非局部弹性力学平面问题的单位集中不连续位移基本解,基于这些基本解和经典弹性力学中的不连续位移边界积分方程_边界元方法,提出了一种非局部弹性力学平面问题的一般解法·利用该解法,研究分析了Grifith裂纹、边缘裂纹等断裂力学中基本的但又很重要的问题·结果表明,裂纹前沿的应力集中系数与裂纹长度有关,给出了裂纹长度对断裂韧性KⅠc的影响·所得结果与已有实验结果一致·
In this paper, the displacement discontinuity fundamental solutions(DDFS) corresponding to the unit concentrated displacement discontinuity for plane problems of nonlocal elasticity are obtained. Based on the displacement discontinuity boundary integral equation (DDBIE) and boundary element method (BEM), a method of analysis of crack problems in non_local elasticity with generalized purpose is proposed. By using this method, several important problems in fracture mechanics such as edge crack are studied. The study of edge crack shows that the stress concentration factor (SCF) near the crack tip is not a constant but varies with the crack length. With this result the effect of crack length on the fracture toughness K Ⅰ c is studied. The results obtained in this paper are in accordance with the published ones.
出处
《应用数学和力学》
EI
CSCD
北大核心
1999年第2期135-143,共9页
Applied Mathematics and Mechanics
基金
国家自然科学基金
机械工业技术发展基金
河南省自然科学基金
关键词
裂纹
边界元
非局部弹性力学
断裂力学
crack
boundary integral equation (BIM)
boundary element method (BEM)
non_local elasticity, fundamental solution