期刊文献+

三维非牛顿熔体前沿界面的Level Set/Ghost/SIMPLEC模拟

Level set/ghost/simplec method for 3D non-newtonian melt front surface
下载PDF
导出
摘要 建立了三维粘性不可压非牛顿流体流动的控制方程,采用Level Set/Ghost/SIMPLEC方法模拟了注塑成型充模阶段的三维流动过程;追踪到了不同时刻的熔体前沿界面,预测并分析了流动过程中不同时刻的压力、速度等重要的流动特征参数,并与牛顿流体相应的流动特征参数做了对比。研究结果表明:Level Set/Ghost/SIMPLEC方法可以准确追踪非牛顿熔体前沿界面;幂律熔体在流动过程中的压差明显大于牛顿熔体的压差,沿横截面的速度分布也有明显的差别。 The governing equations are established for the viscous,incompressible,non-Newtonian fluids.The 3D level set equations are introduced,and the 3D flow process of injection molding is simulated by the Level Set/Ghost/SIMPLEC method,which can precisely capture the front surface of melt and predict the flow features such as pressure and velocity at different times.These flow features are compared with those of Newtonian fluids.The SIMPELC method is applied to the physical controlling equations.Moreover,the level set method is introduced for capturing the melt front and the ghost fluid method is used for coupling the free front with the physical quantities.The results indicate that the Level Set/Ghost/SIMPLEC method can capture 3D front surface of non-Newtonian melt precisely.The pressure difference of power law melt is significantly higher than that of Newtonian melt in the flow process.And the speed distribution of section also has obvious difference,which shows the flow behavior of the non-Newtonian fluids.
机构地区 西北工业大学
出处 《应用力学学报》 CAS CSCD 北大核心 2010年第2期333-339,共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金重大项目(10590353) 国家自然科学基金(10871159) 国家重点基础研究发展计划(2005CB321704)
关键词 LEVEL SET方法 GHOST fluid方法 SIMPLEC方法 非牛顿熔体 三维前沿界面 level set method,ghost fluid method,SIMPLEC method,non-newtonian melt,3D front surface.
  • 相关文献

参考文献13

  • 1Hiber C A,Shen S F.A finite-eiement/flnite-difference simulation of injection molding filling process[J].Journal of Non-Newtonian Fluid Mechanics,1980,7(1):1-32.
  • 2Hwang C J,Kwon T H.A full 3D finite element analysis of the powder injection molding filling process including slip phenomana[Y].Polymer Engineering and Science,2002,42(1):33-50.
  • 3曹伟,王蕊,申长雨.塑料熔体在注塑模中的三维流动模拟[J].化工学报,2004,55(9):1493-1498. 被引量:11
  • 4Geng Tie,Li Dequn,Zhou Huamin.Three-dimensional finite element method for the filling simulationof injection molding[J].Engineering with Computers,2006,21(4):289-295.
  • 5陶文铨.数值传热学[M].西安:西安交通大学出版社,2004:2.
  • 6赵智峰,欧阳洁,张玲,刘德峰.嵌件平板收缩流支化聚合物黏弹行为的数值模拟[J].化工学报,2008,59(4):843-850. 被引量:4
  • 7Shen Changyu,Zhai Ming.An improved algorithm for the simulation of injection-molding filling process[J].Journal of Reinforced Plastics and Compositcs,2005,24(7):691-698.
  • 8Tavakoli R,Babaei R,Varahram N,et al.Numerical simulation of liquid/gas phase flow during mold filling[J].Computer Methods in Applied Mechanics and Engineering,2006,196(1-3):697-713.
  • 9Osher S,Sethian J A.Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics,1988,79(1):12-49.
  • 10Kakouris A P.Nonisothermal flow of a generalized power-law fluid in conversing sections for rubber extrusion[J].Polym EngSci,1987,27(18):1371-1379.

二级参考文献38

  • 1申长雨,王利霞,李倩,陈静波,刘春太.注塑成型充填过程的可压缩流动分析[J].化工学报,2006,57(7):1537-1542. 被引量:3
  • 2郑素佩,欧阳洁,赵智峰,张红平.熔体充模过程动态模拟及流场分析[J].中国塑料,2007,21(5):53-57. 被引量:2
  • 3[1]Hieber C A, Shen S F. A Finite-element/Finite-difference Simulation of the Injection Molding Filling Process.J. Non-Newt.Fluid Mech.,1980,7: 1-32
  • 4[2]Pichelin E, Coupez T. Finite Element Solution of the 3D Filling Problem for Viscous Incompressible Fluid.Computer Methods Applied Mechanic Engineer,1998, 163:359-371
  • 5[3]Hwang C J, Kwon T H. A Full 3D Finite Element Analysis of the Powder Injection Molding Filling Process Including Slip Phenomana. Polymer Engineering and Science,2002,42(1):33-50
  • 6[4]Coupez T, Marie S. From a Direct Solver to a Parallel Iterative Solver in 3D Forming Simulation. Int.J. Supercomp.,1997,11:205-211
  • 7[5]Wathen W, Silvester D. Fast Iterative Solution of Stabilized Stokes Systems*Part Ⅰ*Using Simple Diagonal Preconditioners. SIAM J. Numer.Anal., 1993,30:630-649
  • 8[6]Pichelin E, Coupez T. A Taylor Discontinuous Galerkin Method for the Thermal Solution in 3D Mold Filling. Computer Methods Applied Mechanic Engineer,1999,178:153-169
  • 9[7]Mohan R V, Ngo N D, Tamma K K. On a Pure Finite-element-based Methodology for Resin Transfer Mold Filling Simulations. Polymer Engineering and Science,1999,39(1): 26-43
  • 10[8]Amold D N, Brezzi F, Fortin M. Stable Finite Element for Stokes Equations.Calcolo.,1984,21:337-344

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部