期刊文献+

Inversion formula and Parseval theorem for complex continuous wavelet transforms studied by entangled state representation

Inversion formula and Parseval theorem for complex continuous wavelet transforms studied by entangled state representation
原文传递
导出
摘要 In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre-Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem for complex continuous wavelet transform by virtue of the entangled state representation, which makes the complex continuous wavelet transform theory complete. A new orthogonal property of mother wavelet in parameter space is revealed. In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre-Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem for complex continuous wavelet transform by virtue of the entangled state representation, which makes the complex continuous wavelet transform theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期263-267,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 10775097) the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097)
关键词 Parseval theorem complex continuous wavelet transforms entangled state representation Parseval theorem, complex continuous wavelet transforms, entangled state representation
  • 相关文献

参考文献16

  • 1Jaffard S, Meyer Y and Ryan R D 2001 Wavelets, Tools for Science & Technology (Philadelphia: Society for Industrial and Applied Mathematics).
  • 2Daubechies I 1992 Ten Lectures on Wavelets, CBMSNSF Series in Applied Mathematics (SIAM) (Philadelphia: Baker & Taylor Books).
  • 3Pinsky M A 2002 Introduction to Fourier Analysis and Wavelets (New York: Books/Cole).
  • 4Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill).
  • 5Hu L Y and Fan H Y 2008 J. Mod. Opt. 55 1835.
  • 6Fan H Y and Lu H L 2006 Opt. Lett. 31 407.
  • 7Fan H Y and Lu J F 2004 Commun. Theor. Phys. 41 681.
  • 8Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704.
  • 9Fan H Y and Lu H L 2007 Opt. Lett. 32 554.
  • 10Wunsche A 2000 J. Phys. A Math. and Gen. 33 1603.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部