期刊文献+

结合空间信息的高光谱图像快速分类方法

A Fast Hyperspectral Image Classification Method Combined with Spatial Information
下载PDF
导出
摘要 针对由高光谱图像的大数据量和噪声等因素造成的计算量大、处理时间长以及应用效果差等问题,本文提出了一种高光谱图像快速分类方法,充分利用高光谱图像的空间信息,在实现整个原始图像空间及光谱信息特征提取的基础上,达到降低计算量、抑制图像噪声从而改善分类器性能的目的。通过仿真实验表明:该方法显著抑制了"麻点现象",在改善分类器分类效果的同时,运算时间也明显减少。 A fast classification method of hyperspectral image is presented to resolve these problems caused by large processing data and noise influence. First, space information is used to extract Spatial Region Feature Spectral. Next, the non-linear method of feature extraction is used to extract the feature of SRFS. The simulation results show that the method could significantly improve the classification results of classifiers and reduce computing time.
作者 汪倩 陶鹏
出处 《微计算机信息》 2010年第21期233-234,230,共3页 Control & Automation
关键词 高光谱图像 空间区域特征光谱 非线性特征提取 分类 hyperspectral image SRFS non-finear feature extraction classifieation
  • 相关文献

参考文献9

  • 1Pai-Hui Hsu,Yi-Hsing Tseng.Feature extraction for hyper spectralimage [A].In:Proceedings of the 20th Asian Conference on Remote Sensing[C].Hong Kong:JLGIS, 1999.405-410.
  • 2Mallet Y,Coomans D,de Vel O.Recent developments in discriminant analysis on high dimensional spectral data [J]. Journal of Chemometrics and Intelligent Laboratory Systems, 1996, 11: 157- 173.
  • 3孙洁,张宏磊.基于支持向量机的航空高光谱赤潮监测[J].微计算机信息,2008,24(21):225-227. 被引量:2
  • 4Shah CA, AroraMK, Robila SA,et al. ICA mixture model based unsupervised classification of hyperspectral imagery [A]. 31st Applied Imagery Pattern Recognition Workshop, 2002. Proceedings [C]. 2002.29-35.
  • 5熊桢,童庆禧,郑兰芬.用于高光谱遥感图象分类的一种高阶神经网络算法[J].中国图象图形学报(A辑),2000,5(3):196-201. 被引量:28
  • 6Luis O. Jimenez, Jorge L. Rivera-Medina, Eladio Rodrtguez- Diaz, et al. Integration of Spatial and Spectral Information by Means of Unsupervised Extraction and Classification for Homogenous Objects Applied to Muhispectral and Hyperspectral Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43 (4):844-851.
  • 7L. O. Jimenez, J. Rivera, On the integration of spatial and spectral information in unsupervised classification for multi-spectral and hyper-spectral data[C]. SPIE Conf., Florence, Italy, 1999.
  • 8谌德荣,孙波,陶鹏,宫久路.基于核光谱角余弦的高光谱图像空间邻域聚类方法[J].电子学报,2008,36(10):1992-1995. 被引量:17
  • 9B.Scholkopf, Smola, A;, Muller, K.R. Nonlinear Component Analysis as Kernel Eigenvalue Problem.Technical Report No.44[J]. Max-Planck-Institut biologische Kybernetik, Tubingen Neural Computation 1996, 10(5):1299-1319.

二级参考文献10

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部