期刊文献+

基于次分量分析的DOA跟踪算法 被引量:1

DOA tracking based on minor component analysis approach
下载PDF
导出
摘要 针对信号源入射角时变的情况,分析了基于幂迭代的子空间跟踪算法,提出一种次分量分析方法的子空间跟踪算法。该算法首先利用基于反Hebbian学习的神经网络,抽取多个次分量,操作相对简单、算法稳定、收敛快,且有自组织特性;然后提出一种实时并行处理方法,在抽样结束时数据处理完成;最后采用牛顿法实现运动目标的DOA跟踪。仿真实验证明其收敛快、跟踪性能好。 As the direction of signal source varies with time,this paper proposed a tracking method based on minor component analysis approach.To extract the minor component,the algorithm was based on anti-Hebbian learning neural network and contain only relatively simple operations,it was stable,converges and had self-organizing properties.Then proposed a method of real-time parallel processing,at end time of sampling data,processing also could be finished.Finally,using Newton algorithm to track moving target.Computer simulation results demonstrate the effectiveness of the proposed algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2010年第7期2492-2493,2519,共3页 Application Research of Computers
基金 国家"863"计划资助项目(2009AA7034530)
关键词 DOA跟踪 幂迭代 次分量 反Hebbian 牛顿法 DOA tracing power iterations minor component anti-Hebbian Newton algorithm
  • 相关文献

参考文献7

  • 1陈辉,王永良.秩-1子空间跟踪算法[J].电子与信息学报,2002,24(5):626-630. 被引量:14
  • 2LAMSA K P,HEEROMA J H,SOMOGYI P.Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit[J].Science,2007,315(4):1262-1266.
  • 3FALCONBRIDGE M S,STAMPS R L.A simple anti-Hebbian network learns the sparse,independent components of natural images[J].Neural Computation,2006,18(2):415-429.
  • 4李辉,王珏,于红梅.逼近幂迭代子空间跟踪算法在多用户系统中的应用研究[J].电子学报,2007,35(12):2363-2366. 被引量:3
  • 5ERIKSSON A,STOICA P,SODERSTOM T.On-line subspace algorithms for tracking moving sources[J].IEEE Trans on Signal Processing,1994,42(9):2319-2330.
  • 6LOPESA B I,ZAMBRONI L A.A Newton approach for long term stability studies in power systems[J].Applied Mathematics and Computation,2009,215(9):3327-3334.
  • 7PALMIERI F,ZHU J,CHANG C.Anti-Hebbian learning in topo-logically constrained linear networks:a tutorial[J].IEEE Trans on Neural Networks,1993,4(5):748-761.

二级参考文献17

  • 1张永军,陈宗骘.特征值平移超分辨率算法[J].电子科学学刊,1996,18(5):449-454. 被引量:3
  • 2X. Yang, T. K. Sarkar, E. Arvas, A survey of conjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix, IEEE Trans. on ASSP, 1989, ASSP-37, 1550-1556.
  • 3T.S. Durrani, K. C. Sharman, Eigenfilter approaches to adaptive array processing, IEE Proc.-F., 1983, 130(1), 22-28.
  • 4R.D. DeGroat, Noniterative subspace tracking, IEEE Trans. on SP, 1992, SP-40(3), 571-577.
  • 5B. Yang, Projection approximation subspace tracking, IEEE Trans. on SP, 1995, SP-43(1), 95107.
  • 6G.W. Stewart, An updating algorithm for subspace tracking, IEEE Trans. on SP, 1992, SP-40,1535-1541.
  • 7C.H. Bischof, G. M. Shroff, On updating signal subspaces, IEEE Trans. on SP, 1992, SP-40,96-105.
  • 8J. Yang, M. Kaveh, Adaptive eigensubspace algorithms for direction or frequency estimation and tracking, IEEE Trans. on ASSP, 1988, ASSP-36(1), 241-251.
  • 9Wang X, Poor H V. Bfind multiuser detection: A subspace approach[ J]. IEEE Transactions on Information Theory, 1998,44 (2) :677 - 690.
  • 10Honig M L,Madhow U, Verdu S.Blind adaptive multiuser detection[ J]. IEEE Transactions on Information Theory, 1995,41 (7) :944 - 960.

共引文献15

同被引文献20

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部