摘要
An intensive sampling program had been undertaken in autumn (October, 2008) and winter (December, 2008 and January, 2009) at urban (Xiamen University and Xianyue residential area), suburban (Institute of Urban Environment), industrial area (Lulian Hotel) and background (Tingxi Reservoir) in Xiamen, Fujian Province, to characterize the atmospheric concentration and gas-particle phase partitioning of PAHs. The average concentration of total PAHs in winter was almost 1.7 times higher than those in autumn. The log scale plot of Kp versus sub-cooled liquid vapor pressure (PL^0) for all the data of autumn and winter season samples gave significantly different slopes. The slope for the winter samples (-0.72) was steeper than that for the autumn samples (-0.58). The partitioning results indicated that slope values varied depending on characteristics of specific site, source region and meteorological conditions which play important roles in the partitioning of PAHs. In addition, local emission sources had a stronger effect on partitioning results than long-transported polluted plume. The sources of PAHs in five sampling sites in Xiamen also have been discussed initially. Diagnostic ratios showed that the primary source of PAHs in urban, suburban and industrial area was from vehicle exhausts. While emission from petrochemical factory and power plant was another main contributor to industrial area.
An intensive sampling program had been undertaken in autumn (October, 2008) and winter (December, 2008 and January, 2009) at urban (Xiamen University and Xianyue residential area), suburban (Institute of Urban Environment), industrial area (Lulian Hotel) and background (Tingxi Reservoir) in Xiamen, Fujian Province, to characterize the atmospheric concentration and gas-particle phase partitioning of PAHs. The average concentration of total PAHs in winter was almost 1.7 times higher than those in autumn. The log scale plot of Kp versus sub-cooled liquid vapor pressure (PL^0) for all the data of autumn and winter season samples gave significantly different slopes. The slope for the winter samples (-0.72) was steeper than that for the autumn samples (-0.58). The partitioning results indicated that slope values varied depending on characteristics of specific site, source region and meteorological conditions which play important roles in the partitioning of PAHs. In addition, local emission sources had a stronger effect on partitioning results than long-transported polluted plume. The sources of PAHs in five sampling sites in Xiamen also have been discussed initially. Diagnostic ratios showed that the primary source of PAHs in urban, suburban and industrial area was from vehicle exhausts. While emission from petrochemical factory and power plant was another main contributor to industrial area.
基金
supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-YW-422-4)
the Fujian Natural Science Foundation for Young Scientists (No. 2009J05104)
the Program of Science and Technology Bureau of Xiamen(No. 3502Z20081117)