期刊文献+

广义Gamma模型及自适应KI阈值分割的SAR图像变化检测 被引量:16

SAR change detection based on generalized Gamma distribution divergence and auto-threshold segmentation
原文传递
导出
摘要 基于SAR图像的杂波统计特性,利用广义Gamma模型对降噪配准后的SAR图像统计特征进行拟合,获取了辐射值与局部纹理等特征信息;采用信息论中交叉熵的概念,量化不同时相SAR图像统计特征间的差异程度;利用KS与KL检验相结合,自动选取对差异图拟合情况最好的模型,从而实现基于该模型的KI阈值分割。通过对天津市北辰区以南地区的两幅Radarsat图像,以及北京市顺义区的两幅ASAR图像的实验表明,所提出的方法不仅有效地避免了水面波纹变化所产生的大量虚警,并能有效地检测出传统方法所不能识别的,区域内均值不变,仅纹理发生变化的情况。 Based on the clutter statistical characteristics of SAR image,this paper takes advantage of the generalized Gamma model to fit the filtered and co-registered SAR images,in order to gain the characteristics information,such as radiation value,local texture,etc.Then,the degree of evolution between the statistical characteristics of multi temporal SAR image is measured by the definition of Kullback-Leibler Divergence in information theory.Afterwards,a combination of KS and KL test has been applied into the evaluation of fitting function for the difference map captured in the former step,which help select the best fitting function automatically for the model-based KI threshold segmentation.Experiment was carried on the multi temporal SAR images for Southern Part of Tianjin,acquired by Radarsat-1/2,as well as Shunyi District of Beijing,acquired by Envisat-ASAR.Such results confirmed the method proposed in this paper not only avoid large number of false alarms generated from the changes of surface corrugation,but also effectively detected the regions ignored by traditional methods,which have no variance in mean value,but differ in texture.
出处 《遥感学报》 EI CSCD 北大核心 2010年第4期710-724,共15页 NATIONAL REMOTE SENSING BULLETIN
基金 国家863项目(编号:2009AA12z102) 国家自然科学基金(编号:40601058 40701108 40871191)~~
关键词 广义Gamma K-L散度 KI法则 SAR 变化检测 generalized Gamma Kullback-Leibler Divergence KI SAR change detection
  • 相关文献

参考文献1

二级参考文献17

  • 1Singh A. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 1989, 10(6): 989-1003
  • 2Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E. Digital change detection methods in ecosystem monitoring: a review. International Journal on Remote Sensing, 2004, 25(9): 1565-1596
  • 3Lu D, Mausel P, Brondizio E, Moran E. Change detection techniques. International Journal on Remote Sensing, 2004, 25(12): 2365-2401
  • 4Ridd M K, Liu J. A comparison of four algorithms for change detection in an urban environment. Remote Sensing Environment, 1998,63(2): 95-100
  • 5Radke R J, Andra S, Al-Kofahi O, Roysam B. Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing, 2005, 14(3): 294-307
  • 6Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1171-1182
  • 7Bazi Y, Bruzzone L, Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(4): 874--887
  • 8Bruzzone L, Carlin L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2587-2600
  • 9Carleer A, Debeir O, Wolff E. Comparison of very high spatial resolution satellite image segmentations. In: Proceedings of SPIE Conference on Image and Signal Processing Remote Sensing Ⅸ. Barcelona, Spain: SPIE, 2004. 532-542
  • 10Bovolo F, Bruzzone L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2963-2972

共引文献31

同被引文献205

引证文献16

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部