期刊文献+

基于支持向量机语义分类的两种图像检索方法 被引量:6

Two Image Retrieval Methods Based on Support Vector Machines Semantic Classification
下载PDF
导出
摘要 为了更好的解决基于内容的图像检索问题,提出了2种基于语义的图像检索方法.第1种是基于支持向量机(SVM)语义分类的图像检索方法.该方法首先提取训练图像库的底层特征信息,然后利用SVM对所提取的特征进行训练,构造多分类器.在此基础上,利用分类器对测试图像自动分类,得到图像属于各个类别的概率,实现图像检索.第2种是利用图像自动标注方法进行检索.在基于语义的图像自动标注中,先对训练集进行人工标注,对测试图像利用SVM分类器进行分类,并找到与该图像最相似的N张构成图像集,对该图像集的标注进行统计,找到关键词,从而提供概念化的图像标注以用于检索.通过在标准图像检索库和自建图像库上的实验结果表明,以上2种基于语义的图像检索方法是高效的. In order to solve the problem of content based image retrieval(CBIR), two novel methods of image retrieval based on semantic are proposed. Firstly, we use the method of image retrieval which is based on the SVM semantic classification. In this method, we will use Support Vector Machines (SVM) Statistical Learning Theory tools to train the visual image features in order to construct Multi-class Classifier. Thus the test images can be automatically classified by using this classifier,and we will get the probability of the images belong to the every class easily. Then we use this probability to compute the similarity between images. The second method is the image retrieval based on automatic image annotation. Based on the SVM semantic classification method, the image database which is noted will be used as the training image set. Then we use SVM classifier to classify the test images and find the N-nearest similar images in the image library. Then we estimate the probability of the key words from those images and the automatic image annotation will be accomplished. And this image annotation will be used to image retrieval. Experiments conducted on standard dataset and realistic dataset demonstrate the effectiveness and efficiency of the proposed approach for image retrieval.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期487-494,共8页 Journal of Xiamen University:Natural Science
基金 国家重点基础研究发展计划(973计划)项目(2007CB311005) 国家863计划项目(2006AA01Z-129) 福建省自然科学基金计划资助项目(A0710020) 厦门大学985二期信息创新平台项目
关键词 图像检索 语义特征 支持向量机 分类器 image retrieval semantic feature support vector machines(SVM) classifier
  • 相关文献

参考文献17

  • 1Hiremath P S, Pujari J. Content based image retrieval using color, texture and shape features[C]//Proceedings of the 15th International Conference on Advanced Computing and Communications. Washington, DC: IEEE Computer Society,2007 : 780-784.
  • 2Mori Y,Takahashi H,Oka R. Image-to-word transformation based on dividing and vector quantizing images with words[C]//1st International Workshop on Multimedia Intelligent Storage and Retrieval Ment. USA: [s. n. ], 1999.
  • 3Jeon J,Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models [C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. Toronto, New York: ACM, 2003: 119- 126.
  • 4Pan J, Yang H, Faloutsos C, et al. GCap: graph-based automatic image captioning[C]//Proeeedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (Cvprw'04) Volume 9-Volume 09. Washington, DC: IEEE Computer Society, 2004 : 146.
  • 5Vailaya A A,Figueiredo M,Jain A, et al. A bayesian framework for semantic classification of outdoor vacation images[C]//Proceedings of SPIE: Storage and Retrieval for Image and Video Databases VII. San Jose, CA, USA: SPIE, 1999: 415-426.
  • 6Bartolini I,Ciaccia P, Waas F. Feedbackbypass: a new approach to interactive similarity query processing[C]// Proceedings of the 27th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Pub- lishers,2004 : 201-210.
  • 7Lee C S,Ma M Y,Zhang H. Information embedding based on user's relevance feedback in image retrieval[C]//Multimedia Storage and Archiving Systems Ⅳ (VV02). Boston; SPIE, 1999 : 294-304.
  • 8Wu T, Lin C, Weng R C. Probability estimates for multi-class classification by pairwise coupling[J]. The Journal of Machine Learning Research, 2004, 5: 975- 1005.
  • 9路晶,马少平.基于概念索引的图像自动标注[J].计算机研究与发展,2007,44(3):452-459. 被引量:10
  • 10曹莉华,柳伟,李国辉.基于多种主色调的图像检索算法研究与实现[J].计算机研究与发展,1999,36(1):96-100. 被引量:110

二级参考文献25

  • 1Wang James,Li Jia,G Wiederhold.Simplicity:Semanticssensitive integrated matching for picture libraries[J].IEEE Trans on Pattern and Machine Intell,2001,23(9):947-963
  • 2J Jeon,V Lavrenko,R Manmatha.Automatic image annotation and retrieval using cross-media relevance models[C].The 26th Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval,Toronto,Canada,2003
  • 3Pan JiaYu,Yang HyungJeong,Duygulu Pinar,et al.Automatic image captioning[ C ].The 2004 IEEE Int'l Conf on Multimedia and Expo (ICME'04),Taipei,Taiwan,2004
  • 4A Vailaya,M Figueiredo,A Jain,et al.A Bayesian frame work for semantic classification of outdoor vacation images[C].Storage and Retrieval for Image and Video Databases Ⅶ,San Jose,CA,1999
  • 5G Sychay,E Chang,K Goh.Effective image annotation via active learning[C].IEEE Int'l Conf on Multimedia and Expo (ICME'02),Lausanne,Switzerland,2002
  • 6Li Jia,Wang James.Automatic linguistic indexing of pictures by a statistical modeling approach[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(9):1075-1088
  • 7Karypis George,Han Eui-Hong.Concept indexing:A fast dimensionality reduction algorithm with applications to document retrieval & categorization[R].Twin Cities,USA:University of Minnesota,Tech Rep:TR-00-0016,2000
  • 8Karypis George,Han Eui-Hong.Fast supervised dimensionality reduction algorithm with applications to document categorization & retrieval[C].In:Proc of the 2000 ACM CIKM Int'l Conf on Information and Knowledge Management.New York:ACM Press,2000
  • 9Chang Edward,Goh Kingshy,Sychay Gerard,et al.CBSA:Content-based soft annotation for multimodal image retrieval using Bayes point machines[J].IEEE Trans on Circuits and Systems for Video Technology,2003,13 (1):26-38
  • 10C Zhang,T Chen.An active learning framework for contentbased information retrieval[J].IEEE Trans on Multimedia,2002,4(2):260-268

共引文献119

同被引文献49

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部