摘要
为了更好的解决基于内容的图像检索问题,提出了2种基于语义的图像检索方法.第1种是基于支持向量机(SVM)语义分类的图像检索方法.该方法首先提取训练图像库的底层特征信息,然后利用SVM对所提取的特征进行训练,构造多分类器.在此基础上,利用分类器对测试图像自动分类,得到图像属于各个类别的概率,实现图像检索.第2种是利用图像自动标注方法进行检索.在基于语义的图像自动标注中,先对训练集进行人工标注,对测试图像利用SVM分类器进行分类,并找到与该图像最相似的N张构成图像集,对该图像集的标注进行统计,找到关键词,从而提供概念化的图像标注以用于检索.通过在标准图像检索库和自建图像库上的实验结果表明,以上2种基于语义的图像检索方法是高效的.
In order to solve the problem of content based image retrieval(CBIR), two novel methods of image retrieval based on semantic are proposed. Firstly, we use the method of image retrieval which is based on the SVM semantic classification. In this method, we will use Support Vector Machines (SVM) Statistical Learning Theory tools to train the visual image features in order to construct Multi-class Classifier. Thus the test images can be automatically classified by using this classifier,and we will get the probability of the images belong to the every class easily. Then we use this probability to compute the similarity between images. The second method is the image retrieval based on automatic image annotation. Based on the SVM semantic classification method, the image database which is noted will be used as the training image set. Then we use SVM classifier to classify the test images and find the N-nearest similar images in the image library. Then we estimate the probability of the key words from those images and the automatic image annotation will be accomplished. And this image annotation will be used to image retrieval. Experiments conducted on standard dataset and realistic dataset demonstrate the effectiveness and efficiency of the proposed approach for image retrieval.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第4期487-494,共8页
Journal of Xiamen University:Natural Science
基金
国家重点基础研究发展计划(973计划)项目(2007CB311005)
国家863计划项目(2006AA01Z-129)
福建省自然科学基金计划资助项目(A0710020)
厦门大学985二期信息创新平台项目
关键词
图像检索
语义特征
支持向量机
分类器
image retrieval
semantic feature
support vector machines(SVM)
classifier