期刊文献+

时频结合自适应阈值小波包消噪算法 被引量:2

A time-frequency combination adaptive threshold algorithm of wavelet package de-noising
下载PDF
导出
摘要 在充分考虑人耳听觉特性和噪声统计特性的基础上,提出一种时频结合Bark尺度自适应阈值的语音消噪算法,在Bark频域上自适应调整增强系数可以较准确地进行阈值判定。仿真实验验证,时频结合算法在低信噪比输入情况下较传统语音降噪方法具有明显优势,其在消除高斯白噪声的同时有效降低了语音损失,可获得最大信噪比,谱失真测度最小,增强语音的MOS(Mean Opinion Score)评分明显提高,具有较好的听觉效果。 Based on fully considering the human auditory characteristics and the noise statistical characteristics, a time-frequency combination Bark scale adaptive threshold algorithm for speech de-noising is presented. In the Bark frequency domain the adaptive adjustment of coefficient can increase the accuracy of the threshold value. Simulation results show that the time-frequency combination algorithm in low SNR input cases has obvious advantages over the traditional algorithm, such as to achieve maximal signal-to-noise ratio and minimizing spectral distortion, by using the new algorithm, the damage of weak speech signal can be avoided effectively and the noise eliminated adequately at the same time. The Mean Opinion Score (MOS) of the enhanced speech has a better performance in Subjective test and a better auditory effect could be obtained.
出处 《应用声学》 CSCD 北大核心 2010年第4期256-262,共7页 Journal of Applied Acoustics
关键词 小波包消噪 自适应阈值算法 时频结合 Bark尺度 Wavelet packet de-noising, Adaptive threshold algorithm, Time frequency combination, Bark scaled
  • 相关文献

参考文献9

  • 1张旭东,路明泉.离散随机信号处理.北京:清华大学出版社,2006:359-388.
  • 2王炜,杨道淳,方元,徐柏龄.基于听觉模型的小波包变换的语音增强[J].南京大学学报(自然科学版),2001,37(5):630-636. 被引量:15
  • 3Donoho DL, De-noising by soft thresholding.IEEE Trans, On Inform Theory, 1995, 41(3): 613-627.
  • 4田玉静,左红伟.小波消噪阈值算法优化[J].声学技术,2009,28(4):503-506. 被引量:11
  • 5L.K.Shark, C.Yu. De-noising by optimal fuzzy thresholding in wavelet domain. IEEE Electronics Letters. Vol. 36, No.6, 2004, 03: 581-582.
  • 6Manolakis D G. Statisticaland adaptive signal processing. Greece, Graw-Hill, 2000: 521-577.
  • 7Martin R. Speech Enhancement Using MMSE Short Time Spectral Estimation with Gamma Distributed Speech Priors.Proe of IEEE International Conference On Acoustics Speech and Signal Processing, Orlando, 2005: 319-322.
  • 8Yang W, Dixon M. A modified bark spectral distortion measure which uses noise masking threshold. Pocono Manor, USA, Pennsylvania, Speech Coding for Telecommunications Proc, 1997: 152-160.
  • 9孙新建,邹霞,曹铁勇,张雄伟,赵汉武.基于加权巴克谱失真的语音质量客观评价算法[J].数据采集与处理,2006,21(3):302-306. 被引量:6

二级参考文献18

  • 1邹霞,陈亮,张雄伟.甚低速率语音编码中的高效模拟退火算法研究[J].系统仿真学报,2004,16(10):2181-2184. 被引量:5
  • 2赵治栋,潘敏,陈裕泉.小波收缩中统一阈值函数及其偏差、方差与风险分析[J].电子与信息学报,2005,27(4):536-539. 被引量:4
  • 3YANG D L, XU M X. A noise cancellaion method based on wavelet transform[A]. The Second International Symposium on Chinese Spoken Language Processing(SCSLP)[C]. Beijing, 2006: 117-201.
  • 4Chang Sun W, Kong Y, Yang Sung I. Speech enhancement for non-stationary noise environment by adaptive wavelet packet[J]. ICASSP, 2002: 561-564.
  • 5L.K.Shark, C.Yu. De-noising by optimal fuzzy thresholding in wavelet domain[J]. IEEE Electronics Letters, 2004, 36(6): 581-582.
  • 6Jansen M.Asymptotic behavior of the minmum Meam squared error threshold for noisy wavelet Coefficients of piecewise smooth signals[J]. IEEE Trans. on Signal Proc, 2001, 49(6): 1113-1118.
  • 7HASAN M K, SALAHUDDIN S, KHAN M R. Modified a priori SNR for speech enhancement using spectral subtraction rules[J]. IEEE Signal Process, 2004, 11(4): 450-453.
  • 8Jackson L. Digital Filtering and Signal Processing with MATLAB Exercises[M]. Third edition. Kluwer Academic Publishers, 2006: 139-176.
  • 9秦前清,实用小波分析,1994年,54页
  • 10Yang X,IEEE Trans Information Theory,1992年,138卷,824页

共引文献27

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部