期刊文献+

大强度间歇运动骨骼肌分子适应机制 被引量:11

The Molecular Mechanisms of Adaptation for High Intensity Interval Exercise in Skeletal Muscle
下载PDF
导出
摘要 大强度间歇运动可能代表一个独特的运动方式,充分认识大强度间歇运动诱导骨骼肌分子适应机制非常助于制定相关的训练方法。大强度间歇运动特征为短暂的间歇性肌肉收缩。当前研究表明大强度间歇运动诱导骨骼肌的表型变化可能和传统耐力训练一致。但不同运动方式激活信号途径可能存在信号间交互方式、前反馈和后反馈调节等。因此,尚需大量的研究证实。 High intensity interval exercise represents a unique mode. To understand the molecular mechanisms of adaptation in response to high intensity interval exercise is help for our making up the proper training methods. High intensity interval exercise is characterized by brief intermittent bouts of relatively intense muscle contraction. At present, research suggests that interval exercise training induces phenotypic changes that resemble those elicited after traditional endurance training. However, the different exercise induced muscular response is likely to reveal complex signaling circuits, with feed-back and feed-forward regulation and crosstalk in signaling pathways.Therefore, the skeletal muscle in response to exercise still needs to be more carefully established.
出处 《体育科技文献通报》 2010年第2期39-41,共3页 Bulletin of Sport Science & Technology
关键词 大强度 间歇运动 骨骼肌 分子 适应机制 intensity interval exercise molecular skeletal muscle adaptation mechanism
  • 相关文献

参考文献3

二级参考文献43

  • 1Coffey V G, Hawley J A. The molecular bases of training adaptation[J]. Sports Med, 2007,37 (9) : 737-763.
  • 2Hornberger T A, Armstrong D D, Koh T J, et al. Intracellular signaling specificity in response to uniaxial vs multiaxial stretch:implications for mechanotransduction [J]. Am J Physiol Cell Physiol, 2005,288(1) : C185-194.
  • 3Schertzer J D, Green H J,Fowles J R, et al. Effects of prolonged exercise and recovery on sarcoplasmic reticulum Ca^2+ cycling properties in rat muscle homogenates[J]. Acta Physiol Stand, 2004,180:195-208.
  • 4Holloway G P,Green H J,Duhamel T A,et al. Muscle sarcoplas mic reticulum Ca^2+ cycling adaptations during 16h of heavy intermittent cycle exercise[J]. J Appl Physiol, 2005,99 (3) : 836- 843.
  • 5Chin E R. Role of Ca^2+/calmodulin-dependent kinases in skeletal muscle plasticity[J]. J Appl Physiol, 2005,99 (2) : 414-423.
  • 6Smith M A,Reid M B. Redox modulation of contractile function in respiratory and limb skeletal muscle[J]. Resp Physiol Neurohiol New Direct Exerc Physiol,2006,151(2-3):229-241.
  • 7Hardie D G,Sakamoto K. AMPK:a key sensor of fuel and energy status in skeletal muscle[J]. Physiology,2006,21(1):48-60.
  • 8Jorgensen S B, Wojtaszewski J F P, Viollet B, et al. Effects ofαAMPK knockout on exercise-induced gene activation in mouse skeletal muscle[J]. Faseb J,2005,19(9):1146-1148.
  • 9Durante P E,Mustard K J,Park S H,et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforrns in rat muscles [J ]. Am J Physiol Endocrinol Metab,2002,283(1) :E178-186.
  • 10Atherton P J,Babraj J A,Smith K,et al. Selective activation of AMPK-PGC-1; or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation[J]. Faseb J, 2005, 19 (7): 786-788.

共引文献31

同被引文献48

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部