期刊文献+

基于粗糙集和贝叶斯理论的决策规则挖掘研究

Research of decision-making rules mining based on rough set theory and Bayes theory
下载PDF
导出
摘要 针对传统粗糙集在关键信息缺省较多,存在无法进行精确约简和分类等弊端,将贝叶斯原理引入到粗糙集理论中,利用贝叶斯分类器具有概率性语义和因果关系的优点,以及将先验知识和概率相结合的特点,探索和构建了规则支持度、置信因子、覆盖因子的规则获取算法,并通过实例对该算法进行说明和分析. In view of such defects as the default of the key information, incapability of precision reduction and classification in the traditional rough set, we introduced the Bayes theory into rough set theory. By making use of the advantages of probabilistic semantics, causality and the combination of prior knowledge and probability in Bayes theory, we explored and constructed the rule acquisition algorithm of rule support, certain factor and coverage factor. The algorithm is illustrated and analyzed through some examples in the paper.
作者 陶铁军 梁华
出处 《南昌工程学院学报》 CAS 2010年第3期1-4,共4页 Journal of Nanchang Institute of Technology
关键词 贝叶斯理论 粗糙集 规则获取 决策算法 Bayes theory rough set rule acquisition decision algorithm
  • 相关文献

参考文献3

  • 1王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246. 被引量:369
  • 2刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 3Pawlak Z.Rough set theory and its applications[J].Journal of Telecommunications and Information Technology,2002(3):7-10.

二级参考文献29

共引文献724

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部