期刊文献+

基于PLS的加权朴素贝叶斯分类测试算法 被引量:4

Weighted Naive Bayes Classification Text Algorithm Based on Partial Least Squares
下载PDF
导出
摘要 朴素贝叶斯算法是一种简单而高效的分类算法,但是它的条件独立性假设影响了其分类性能。通过放松朴素贝叶斯假设,可以增强其分类效果,但通常会导致计算代价大幅提高。文章提出了一种基于偏最小二乘的加权朴素贝叶斯分类算法,通过建立条件属性和决策属性之间偏最小二乘回归方程,把回归系数赋给对应的条件属性,作为相应的权重,从而在保持简单性的基础上有效地提高了朴素贝叶斯算法的分类性能。最后,通过在UCI数据集上的仿真实验,验证了该算法的有效性。 Naive Bayes algorithm is a simple and effective classification algorithm.However,its classification performance is affected by its conditional attribute independence assumption.Many techniques have explored the basic assumption of Naive Bayes to increase accuracy,which always cost much more computing time.In this article,proposes a weighted Naive Bayes classification algorithm based on partial least squares (PLS).By setting a regression equation of PLS between condition attributes and decision attribute,different condition attributes are weighted by corresponding regression coefficients.Then,classification performance can be improved effectively and simply.At last,simulation results on a variety of UCI data sets illustrate the efficiency of this method.
作者 李雪莲
出处 《电子质量》 2010年第7期4-6,共3页 Electronics Quality
关键词 朴素贝叶斯 加权朴素贝叶斯 偏最小二乘 分类测试 Naive Bayes Weighted Naive Bayes Partial Least Squares Classification Test
  • 相关文献

参考文献4

二级参考文献46

共引文献120

同被引文献36

  • 1张静,王建民,何华灿.基于属性相关性的属性约简新方法[J].计算机工程与应用,2005,41(28):55-57. 被引量:18
  • 2程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 3邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 4Vyacheslav Zakorzhevsk. 卡巴斯基实验室每天检测到32.5万个最新恶意文件[Z/OL].[2014-12-03] . http://news.kaspersky.com.cn/news2014/12n/141203.htm.
  • 5Calvet J, Fernandez J M, Marion J Y. Aligot:Cryptographic function identification in obfuscated binary programs[C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security. New York, USA:ACM, 2012:169-182.
  • 6Leder F, Martini P, Wichmann A. Finding and extracting crypto routines from malware[C]//Performance Computing and Communications Conference (IPCCC), 2009 IEEE 28th International. Piscataway, NJ:IEEE Press, 2009:394-401.
  • 7Cui B, Wang F, HaoY, et al. A taint based approach for automatic reverse engineering of gray-box file formats[J].Soft Computing, 2015:1-16.
  • 8Wang Z, Jiang X, Cui W, et al. ReFormat:Automatic reverse engineering of encrypted messages[C]//Proceedings of the 14th European Conference on Research in Computer Security. Berlin, GER:Springer-Verlag, 2008:200-215.
  • 9Lutz N. Towards revealing attackers intent by automatically decrypting network traffic[J]. Eth Zuerich, 2008(8):1-52.
  • 10Gr bert F, Willems C, Holz T. Automated identification of cryptographic primitives in binary programs[J].Lecture Notes in Computer Science, 2011,6961:41-60.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部