期刊文献+

一种微小型图像融合实验系统设计与验证

Design and Demonstration of an Experimental Micro-Platform for Image Fusion
下载PDF
导出
摘要 为了满足微小型载体负载能力的要求,利用BF548处理器体积小、功耗低以及外设资源丰富的优点,设计和验证了一种微小型低功耗图像融合实验平台.并针对所设计的硬件平台,提出快速实现的基于像素灰度概率密度分布离散度分析的红外与可见光图像融合算法.该算法利用灰度概率密度分布之间的离散度判断目标区域和背景区域,不同区域采用不同融合规则.仿真实验表明,该算法相对于传统提升小波融合算法,信息熵提高了16%,标准差提高了86%以上. In order to meet the load capacity of the mini-system,the image fusion system should have low power dissipation and small volume. With the advantages of small volume,low power dissipation and plentiful peripherals,BF548 is selected as the main processor of the image fusion system to satisfy the special requirement of the mini-system. Then a new optimized fusion algorithm based K-L entropy analysis is proposed. The infrared source image is segmented into object and background region based on K-L entropy between visible and infrared images,and different fusion strategies are used for different regions. Through simulation experiment,it is proved that the information entropy based on this algorithm improves 16% over that based on traditional lifting wavelet algorithm,and the standard deviation improves more than 86%.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2010年第6期693-697,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60801050)
关键词 图像融合 K-L散度 微小型 BF548 优化 image fusion K-L entropy microminiature BF548 optimization
  • 相关文献

参考文献5

  • 1Piella G.A general framework for multiresolution image fusion:from pixels to regions[J].Information Fusion,2003,4(4):259-280.
  • 2Zhang Zhong,Blum R S.Region-based image fusion scheme for concealed weapon detection[C]//Proceedings of the 31st Annual Conference on Information Sciences and Systems.Baltimore:ISIF,1997:1-4.
  • 3Lewis J J,O'Callaghan R J,Nikolov S G,et al.Pixel and region-based image fusion with complex wavelets[J].Information Fusion,2007,8(2):119-130.
  • 4杨翠,张建奇.基于红外特征与区域相似的图像融合算法[J].西安电子科技大学学报,2006,33(6):871-875. 被引量:7
  • 5于劲松,万九卿,高秀林.红外图像弱小点目标检测技术研究[J].兵工学报,2008,29(12):1518-1521. 被引量:15

二级参考文献8

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部