摘要
目的:提出一种新的基于波形特征和SVM的心电信号自动分类实现方法。方法:定义并提取了基于时域特征、小波域特征和高阶统计量特征等三大类心电特征参数,将一次性直接求解多类模式的SVM方法应用于心电信号分类。结果:通过对心电数据库典型心律失常信号的分类测试,验证了所提出心电信号分类方法的有效性。结论:本方法的实现可以有效提高了分类识别精度和速度。
Objective: This paper put forward for classifying cardiac arrhythmia signals based on ECG wavcform features and support vector machine (SVM). Methods: The time-domain feather,wavelet transform domain characteristics and higher-order cumulants of ECG signals arc defined and extracted as three types of ECG features .In this paper the SVM multi-class classifi- cation method is used in ECG for the first time. Results: The classification method is validated with the cardiac arrhythmia signals obtained from thc ECG databasc. Conclusions: SVM based ECG classification is also carried out respectively with thrcc different types of feature set.this method improvc the efficiency and prccision of classificr.
出处
《中国医学物理学杂志》
CSCD
2010年第4期2043-2046,共4页
Chinese Journal of Medical Physics
基金
山东省高等学校科技计划项目(项目编号:J09LG25)
关键词
波形特征
支持向量机(SVM)
自动分类
wavcform feature
support vector machine(SVM)
automatic classifying