期刊文献+

基于数据依赖核函数的核优化算法 被引量:4

Data-Dependent Kernel Function Based Kernel Optimization Algorithm
原文传递
导出
摘要 为了克服核学习中核函数及参数选择问题并提升算法性能,文中提出一种基于数据依赖核函数的核优化算法,用最大间隔准则建立最优目标函数求解数据依赖核的最优参数.实验表明文中算法可有效提高核学习机的性能. To solve the selection problem of kernel function and its parameters in kernel learning to enhance the performance of the algorihtm, data-dependent kernel function based kernel optimization method is proposed in this paper. The optimal objective function is built through the maximum margin criterion to solve the optimal parameter of data-dependent kernel. Experimental results show that the proposed algorithm can effectively increase the performance of kernel learnin~ machine.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第3期300-306,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60772074) 黑龙江省博士后研究基金(No.LBH-Z08131) 中国博士后科学基金(No.20090450996)资助项目
关键词 核学习 核优化 经验特征空间 Kernel Learning, Kernel Optimization, Empirical Feature Space
  • 相关文献

参考文献12

  • 1Wang Lei,Chan K L,Xue Ping.A Criterion for Optimizing Kernel Parameters in KBDA for Image Retrieval.IEEE Trans on Systems,Man and Cybernetics,2005,35 (3):556-562.
  • 2Huang Jian,Yuen P C,Chen Wensheng,et al.Kernel Subspace LDA with Optimized Kernel Parameters on Face Recognition//Proc of the 6th IEEE International Conference on Automatic Face and Gesture Recognition.Southampton,UK,2004:1352-1355.
  • 3Chen Wensheng,Yuen P C,Huang Jian,et al.Kernel MachineBased One-Parameter Regularized Fisher Discriminant Method for Face Recognition.IEEE Trans on Systems,Man and Cybernetics,2005,35(4):659 -669.
  • 4Micchelli C A,Pontil M.Learning the Kernel Function via Regularization.Journal of Machine Learning Research.2005,6:1099 -1125.
  • 5Lanckriet G R G,Cristianini N,Bartlett P,et al.Learning the Kernel Matrix with Semidefinte Programming.Journal of Machine Learning Research.2004,5:27-72.
  • 6Dai Guang,Yeung D Y.Kernel Selection for Semi-Supervised Kernel Machines// Proc of the 24th International Conference on Machine Learning.Corvalis,Oregon,2007:1457-1465.
  • 7Xiong Huilin,Swamy M N S,Ahmad M O.Optimizing the Kernel in the Empirical Feature Space.IEEE Trans on Neural Networks.2005,16(2):460-474.
  • 8Cristianini N,Kandola J,Elisseeff A,et al.On Kernel Target Alignment//Dietterich T G,Becker S,Ghahramani Z.Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2002,XIV:367-373.
  • 9Amari S,Wu S.Improving Support Vector Machine Classifiers by Modifying Kernel Functions.Neural Networks,1999,12 (6):783-789.
  • 10Tao Qing,Chu Dejun,Wang Jue.Recursive Support Vector Machines for Dimensionality Reduction.IEEE Trans on Neural Networks,2008,19(1):189-193.

同被引文献41

引证文献4

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部