期刊文献+

裂纹扩展过程模拟的无网格MSLS方法 被引量:10

SIMULATION OF CRACK GROWTH BY THE MSLS METHOD
原文传递
导出
摘要 采用一种新提出的无网格MSLS方法来进行裂纹扩展过程的模拟分析,该方法的插值函数具有Kronecker delta属性,能够方便准确地施加本质边界条件,且其计算和求导过程相对滑动最小二乘(MLS)插值更为简单,克服了其它无网格方法的一些主要困难,适合于裂纹扩展等网格畸变和网格移动等问题的分析模拟。该文中采用围线积分法计算裂纹的应力强度因子,用最大周向应力理论来建立复合裂纹的断裂准则,数值算例表明了该文理论和方法的正确性与可行性。 A newly proposed Meshless Shepard and Least Square (MSLS) interpolation has been employed for the simulation of crack growth. The MSLS shape function possesses the much desired Kronecker delta property. Thus the essential boundary conditions can be treated as easily as they are in Finite Element Method (FEM). The construction and derivation of the MSLS interpolation are also simpler than that of the Moving Least Square (MLS) approximation. This MSLS method overcomes the main difficulties of other meshless methods and is well-suited for the analysis of crack propagations. In this work, the contour integral method has been used to compute the mixed-mode stress intensity factors. The crack propagation angle is determined by the criterion of maximum stress in the tangential direction. Several numerical examples are presented to verify the validity and accuracy of the present method.
出处 《工程力学》 EI CSCD 北大核心 2010年第7期21-26,共6页 Engineering Mechanics
基金 国家自然科学基金项目(50579093) 教育部科学技术研究重点项目(107041)
关键词 裂纹扩展 无网格 无单元 Shepard函数 MSLS MLS crack growth meshless element free shepard function MSLS MLS
  • 相关文献

参考文献22

  • 1张雄 刘岩.无网格方法[M].北京:清华大学出版社,2004.14-19.
  • 2龙述尧,陈莘莘.弹塑性力学问题的无单元伽辽金法[J].工程力学,2003,20(2):66-70. 被引量:23
  • 3袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展[J].工程力学,2002,19(1):25-28. 被引量:13
  • 4Marc D, Huang N D. A meshless method with enriched weight functions for fatigue crack growth [J]. International Journal for Numerical Methods in Engineering, 2004, 59: 1945- 1961.
  • 5李树忱,程玉民,李术才.动态断裂力学的无网格流形方法[J].物理学报,2006,55(9):4760-4766. 被引量:19
  • 6Gingold R A, Moraghan J J. Smoothed particle hydrodynamics: Theory and applications to non-spherical stars [J]. Monthly Notice of the Royal Astronomical Society, 1977, 18: 375-389.
  • 7Liu G R, Gu Y T. A point interpolation method for two-dimensional solids [J]. International Journal for Numerical Methods in Engineering, 2001, 50:937-951.
  • 8龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518. 被引量:72
  • 9Belytschko T, Krongauz Y, Organ D. Meshless methods: An overview and recent developments [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 3-47.
  • 10Belytschko T, Lu Y Y, Gu L. Element-free Galerkin method [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.

二级参考文献25

  • 1李树忱,程玉民.基于单位分解法的无网格数值流形方法[J].力学学报,2004,36(4):496-500. 被引量:47
  • 2王龙甫.弹性理论[M].科学出版社,1979..
  • 3聂武 孙丽萍.船舶计算结构力学[M].哈尔滨:哈尔滨工程大学出版社,1999..
  • 4Nayroles B, Touzot G, Villon P. Generalizing the finite element method. Diffuse approximation and Diffuse elements [J]. Computer Mech., 1992, 10:307-318.
  • 5Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int. J. for Num. Methods in Eng., 1994, 37:229-256.
  • 6Lu Y Y, Belytschko T, Gu L. A new implementation of the element-free Galerkin method[J]. Comput methods Appl. Mech. Engrg, 1994, 113: 397-414.
  • 7Kryl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method[J]. Comput Mech, 1995,17: 26-35.
  • 8团体著者,应力强度因子手册,1981年
  • 9Atluri S N,Comput Mech,1998年,22卷,2期,117页
  • 10Belytschko T,Int J Num Meth Eng,1994年,37卷,229页

共引文献149

同被引文献130

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部