期刊文献+

植物重金属转运蛋白研究进展 被引量:41

Heavy metal-transport proteins in plants:A review
原文传递
导出
摘要 土壤中的有毒重金属不仅对植物有害,也可通过食物链危害人类和动物的健康.重金属转运蛋白在植物吸收、抵抗重金属的复杂机制中起着关键作用.植物重金属转运蛋白分为吸收蛋白和排出蛋白,其中,吸收蛋白转运必需重金属进入细胞,同时也会因为必需重金属的缺乏或离子之间的竞争而运载有毒重金属;排出蛋白是一类解毒蛋白,可将过量的或有毒的重金属逆向转运出细胞,或区室化于液泡中.目前,细胞内多种重金属转运蛋白基因的转录水平与重金属离子积累之间的联系已被揭示,并分离克隆出诸多相关蛋白家族成员.本文综述了近年来发现并鉴定的主要重金属转运蛋白的金属亲和性、器官表达特异性及细胞内定位等的研究进展. The heavy metals in soil not only damage plant growth,but also threaten the health of human beings and animals through food chain.Heavy metal-transport proteins play crucial roles in the heavy metals uptake and tolerance of plants.Plant heavy metal-transport proteins can be classified as metal-uptake proteins and metal-efflux proteins.The metal-uptake proteins can transport essential heavy metals into cytoplasm,and also,transport toxic heavy metals into cytoplasm due to the absence of essential heavy metals or the competition among ions.The metal-efflux proteins are a group of detoxification proteins,which can efflux excess and toxic heavy metals from cytoplasm,or move these metals into vacuole.In recent years,the associations between elevated steady-state transcript levels of heavy metal-transporter genes and metal accumulation in plants have been revealed,and many heavy metal-transport proteins have been cloned and identified.In this paper,the metal affinity,tissue-specific gene expression,and cellular location of representative heavy metal-transport proteins were reviewed.
出处 《应用生态学报》 CAS CSCD 北大核心 2010年第7期1875-1882,共8页 Chinese Journal of Applied Ecology
基金 教育部长江学者和创新团队发展计划项目(IRT0453)资助
关键词 植物 重金属转运蛋白 蛋白家族 基因 plant heavy metal-transport protein protein family gene
  • 相关文献

参考文献57

  • 1Zhuang P, Zou B, Li NY, et al. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environmental Geochemistry and Health, 2009, 31: 707- 715.
  • 2Wilson B, Pyatt FB. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bulletin of Environmental Contamination and Toxicology, 2007, 78 : 390-394.
  • 3Grant C, Clarke J, Duguid S, et al. Selection and breeding of plant cuhivars to minimize cadmium accumulation. Science of the Total Environment, 2008, 390: 301-310.
  • 4鲁家米,刘延盛,周晓阳.植物重金属转运蛋白及其在植物修复中的应用[J].中国生态农业学报,2007,15(1):195-200. 被引量:10
  • 5姚银安,杨爱华,胡小京,徐刚.超富集植物重金属吸收转运机制的研究进展[J].生物学通报,2008,43(12):3-5. 被引量:6
  • 6Ueno D, Yamaji N, Ma JF. Further characterization of ferric-Phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. Journal of Experimental Botany, 2009, 60:3513-3520.
  • 7Le Jean M, Schikora A, Mari S, et al. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. The Plant Journal, 2005, 44: 769 -782.
  • 8Briat JF, Curie C, Gaymard F. Iron utilization and metabolism in plants. Current Opinion in Plant Biology, 2007, 10:276-282.
  • 9Koike S, Inoue H, Mizuno D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. The Plant Journal, 2004, 39 : 415-424.
  • 10Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 2002, 14: 1223-1233.

二级参考文献58

  • 1孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究[J].植物生态学报,2005,29(3):497-504. 被引量:96
  • 2鲁家米,刘延盛,周晓阳.植物重金属转运蛋白及其在植物修复中的应用[J].中国生态农业学报,2007,15(1):195-200. 被引量:10
  • 3Assunao A.G.L.,Martins P.D.C.,Foher S.D.et al.Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens.Plant Cell Environ.2001,24:217-226.
  • 4Drager D.B.,Desbrosses-Fonrouge A.G..Krach et al.Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels.Plant J 2004,39:425-439.
  • 5Freeman J.L.,Persans M.W.,Nieman K.et M. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators.Plant Cell 2004,16:2176-2191.
  • 6Freeman J.L., Garcia D., Kim D. et al. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 2005, 137: 1082-1091.
  • 7Ingle R.A., Mugford S.T., Rees J.D. et al. Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 2005, 17:2089-2106.
  • 8Lombi E., Tearall K.L., Howarth J.R. et al. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens.Plant Physiol 2002, 128:1359-1367.
  • 9Schat H.,Llugany M.,Vooijs R.et al.The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes.J Exp Bot, 2002,53(379):2381-2392.
  • 10Weber M., Harada E., Vess C. et al. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors.Plant J 2004, 37:269-281.

共引文献13

同被引文献709

引证文献41

二级引证文献331

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部