期刊文献+

基于多维ANFIS的T-S模糊控制规则聚类获取方法 被引量:13

Clustering obtainment method of T-S fuzzy control rules based on multi-dimensional ANFIS
下载PDF
导出
摘要 T-S模糊模型与自适应神经模糊推理系统(ANFIS)的结合便于描述多输入系统模糊控制规则.为解决规则前件过多时传统ANFIS结构导致的维数灾难问题,同时进一步提高ANFIS对于复杂系统T-S规则在线获取速度,首先采用多维输入向量对ANFIS网络进行修正,在此基础上提出了T-S模糊控制规则聚类获取方法;其次,利用所提出的方法分别对倒立摆和二阶滞后系统进行了控制仿真,该方法同Mamdani规则自组织模糊控制的控制效果比较表明两者的最大超调量、振荡次数、过渡时间基本一致,上升时间要较Mamdani模糊控制器缩短3个采样周期,控制规则较Mamdani控制器减少了45条. The combination of T-S fuzzy model and adaptive-network-based fuzzy inference system(ANFIS) is convenient for description of multi-input fuzzy control rules. In order to solve dimension explosion problem of conventional ANFIS structure under large amount of rule antecedent and improve online extraction speed for complex systems,ANFIS network is firstly modified adopting multi-input vector,then a clustering obtainment method of T-S control rules is presented. Simulation work towards inverted pendulum and the second-order delay system is conducted,and comparative results of the presented method and Mamdani-type controller show similar control performances such as maximum overshoot,fluctuation times and transition time. Meanwhile,the presented method has 3 sampling periods shorter rise time and 45 decreased control rules than Mamdani-type controller.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第4期580-585,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(50578049)
关键词 ANFIS 多输入系统 T-S模型 聚类 规则获取 ANFIS multi-input system T-S model clustering rule extraction
  • 相关文献

参考文献13

  • 1MAMDANI E H. Application of fuzzy algorithm for simple dynamic plant [J]. Proceedings of IEEE, 1974, 121(12) :1585-1588.
  • 2TOBI T, HANAFUSA T. A practical application of fuzzy control for an air-conditioning system [J]. International Journal of Approximate Reasoning,1991, 5(3):331-348.
  • 3PEDRYCZ W. Fuzzy Control and Fuzzy Systems [M]. 2nd Ed. New York :Wiley, 1993.
  • 4张吉礼,欧进萍,孙德兴.基于作用模糊子集推理的单片机模糊控制实现原理及其应用[J].控制理论与应用,2001,18(4):576-580. 被引量:8
  • 5刘辉,张吉礼,孙德兴.规则双阶段提取自组织模糊控制方法[J].哈尔滨工业大学学报,2005,37(9):1189-1191. 被引量:5
  • 6刘辉,张吉礼,孙德兴.实验台送风温度规则自校正模糊控制研究[J].暖通空调,2005,35(12):97-99. 被引量:1
  • 7TAKAGI T, SUGENO M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1):116-132.
  • 8GHIAUS C. Fuzzy model and control of a fan-coil [J]. Energy and Buildings, 2001, 33(6) :545-551.
  • 9HE Ming, CAI Wen-jian , LI Shao-yuan. Multiple fuzzy model-based temperature predictive control for HVAC systems [J]. Information Sciences, 2005, 169:155-174.
  • 10JANG J R. ANFIS adaptive-network-based fuzzy inference system [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3):665-685.

二级参考文献16

  • 1陈康,陈天殷.变频模糊控制技术应用于分体式空调器[J].机电工程,1994,11(4):15-18. 被引量:3
  • 2彭小奇,梅炽,周孑民,唐英.多变量模糊控制模型辨识方法及其在矿热电炉决策支持系统中的应用[J].控制理论与应用,1994,11(5):582-587. 被引量:13
  • 3Zhang Jili,学位论文,1998年
  • 4Zhang Youde,Technique Handbook Primciple and Applicationforthe Single Ship Microcomputer,1992年,1页
  • 5Wang Peizhuang,北京师范大学学报,1989年,1期,1页
  • 6Chen Yongyi,辽宁师范大学学报,1984年,3期,1页
  • 7LAYNE J R, PASSINO K M. Fuzzy model reference learning control [ J ]. Journal of Intelligent and Fuzzy Systems, 1996,4 ( 1 ) :33 - 47.
  • 8PROCKY T J, MAMDANI E H. A linguistic self- organizing process controller[ J ]. Automatica, 1978,15(1) :15 -30.
  • 9GONZALEZ A, PEREZ R. Completeness and consistency conditions for learning fuzzy rules [ J ]. Fuzzy Sets and Systems, 1998,96( 1 ) :37 -51.
  • 10Chiu S, Chand S. Fuzzy controller design and stability analysis for an aircraft model[C] // Proc of the American Control Conf, 1989,19(4): 745 - 755

共引文献11

同被引文献77

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部