期刊文献+

Hirota-Satsuma方程的复合型解(英文)

Complexiton Solutions to the Hirota-Satsuma Equation
下载PDF
导出
摘要 推广了用Wronskian行列式法构造Korteweg-de Vries方程复合型解的方法,并给出Hirota-Satsuma方程的复合型解.该方法也适用于构造Lax对的时间部分包含特征根λ的其他非线性发展方程的精确解. In this paper,the Wronskian determinants method for constructing the complexiton solutions to the Korteweg-de Vries equation is generalized and applied to obtain the complexiton solutions to the Hirota-Satsuma equation.The method can be used to seek the exact solutions to other nonlinear evolution equations of which the time part of the Lax pair contains the eigenvalue λ.Hence the method can be applied to more equations.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2010年第4期331-335,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 Project Supported by the National Natural Science Foundation of China(10761005) the Inner Mongolia Natural Science Foundation(20080404 MS0113) the High Education Science Research Programof Inner Mongolia(NJzc08134) the Baotou Teachers College Foundation(BSY200812019)
关键词 WRONSKIAN行列式 HIROTA-SATSUMA方程 复合型解 LAX对 Wronskian determinant Hirota-Satsuma equation complexiton solution Lax pair
  • 相关文献

参考文献11

二级参考文献177

  • 1[1]Ablowitz M J, Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
  • 2[3]Hirota R 1971 Phys. Rev. Lett. 27 1192
  • 3[4]Wang M L 1995 Phys. Lett. A 199 169
  • 4[5]WangM L, ZhouY B, LiZB 1996 Phys. Lett. A21667
  • 5[6]Yang L, Liu J, Wang Y 1999 Phys. Lett. A 260 55
  • 6[9]Fan E G 2000 Phys. Lett. A 277 212
  • 7[14]Yan C 1996 Phys. Lett. A 224 77
  • 8[15]LouSY 2000 Phys. Lett. A27794
  • 9[16]TangX Y, Lou S Y 2002 Commun. Theor. Phys. (Beijing) 38 1
  • 10[22]Zhang J F 1998 Acta Phys.Sin.47 1416(in Chinese)[张解放1998物理学报 47 1416]

共引文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部