期刊文献+

Schauder不动点定理在(k,n-k)共轭边值问题中的应用 被引量:2

Application of Schauder's Fixed Point Theorem to(k,n-k) Conjugate Boundary Value Problem
下载PDF
导出
摘要 利用Schauder不动点定理研究高阶奇异(k,n-k)共轭边值问题:{(-1)n-kx(n)=f(t,x)+e(t),t∈(0,1),x(i)(0)=0,0≤i≤k-1,x(j)(1)=0,0≤j≤n-k-1,其中f的第一个或第二个变量可以具有奇性,e可以是负的,并给出了几个新的存在性结果. New results on the existence of positive solutions for singular higher differential equations with(k,n-k) conjugate boundary value problem{(-1) n-kx(n) = f(t,x) + e(t),t ∈(0,1),x(i)(0) = 0,0 ≤ i ≤ k-1,x(j)(1) = 0,0 ≤ j ≤ n-k-1,have been obtained,where f may be singular in its first or second variable,e does not need to be positive.The proof relies on Schauder's fixed point theorem.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第4期551-556,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10971021) 中国石油大学校内基金(批准号:y070815)
关键词 正解 SCHAUDER不动点定理 共轭边值问题 positive solution Schauder's fixed point theorem conjugate boundary value problem
  • 相关文献

参考文献12

  • 1Agarwal R P,O'Regan D.Multiplicity Results for Singular Conjugate,Focal and (n,p) Problems[J].J Differential Equations,2001,170(1):142-156.
  • 2LIN Xiao-ning,JIANG Da-qing,LI Xiao-yue.Existence and Uniqueness of Solutions for Singular (k,n-k) Conjugate Boundary Value Problems[J].Computers and Mathematics with Applications,2006,52(3/4):375-382.
  • 3Eloe P W,Henderson J.Singular Nonlinear (k,n-k) Conjugate Boundary Value Problems[J].J Differential Equations,1997,133(1):136-151.
  • 4JIANG Da-qing.Multiple Positive Solutions to Singular Boundary Value Problems for Superlinear Higher Order ODEs[J].Computers and Mathematics with Applications,2000,40(2/3):249-259.
  • 5KONG Ling-bin,WANG Jun-yu.The Green's Function for (k,n-k) Boundary Value Problems and Its Applications[J].J Math Anal Appl,2001,255(2):404-422.
  • 6Agarwal R P,O'Regan D.Positive Solutions of Differential,Difference and Integral Equations[M].Dordrecht:Kluwer Acad Publishers,1999.
  • 7LU Meng-seng.On a Fourth Order Eiqenvalue Problem[J].Advances in Mathematics,2000,29(1):91-93.
  • 8Agarwal R P,O'Regan D.Singular Differential,Integral and Discrete Equations:the Semipositone Case[J].Mosc Math J,2002,2(2):1-15.
  • 9Agarwal R P,Grace S R,O'Regan D.Discrete Semipositone Higher-Order Equations[J].Computers and Mathematics with Applications,2003,45(6/7/8/9):1171-1179.
  • 10Agarwal R P,Grace S R,O'Regan D.Existence of Positive Solutions to Semipositone Fredholm Integral Equations[J].Funkcial Ekvac,2002,45:223-235.

同被引文献19

  • 1Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:North-Holland Mathematics Studies,2006.
  • 2Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Preess,1974.
  • 3Ross B.The Fractional Calculus and Its Applications[M].Berlin:Springer-Verlag,1975.
  • 4Nonnenmacher T F,Metzler R.On the Riemann-Liouvile Fractional Calculus and Some Recent Applications[J].Fractals,1995,3(3):557-566.
  • 5Tatom F B.The Relationship between Fractional Calculus and Fractals[J].Fractals,1995,3(1):217-229.
  • 6Podlubny I.Fractional Differential Equations[M].New York:Academic Press,1999.
  • 7Samko S G,Kilbas A A,Marichev O I.Fractional Integral and Derivatives(Theorey and Applications)[M].Switzerland:Gordon and Breach,1993.
  • 8BAI Zhan-bing,LHai-shen.Positive Solutions for Boundary Value Problem of Nonlinear Fractional DifferentialEquation[J].J Math Anal Appl,2005,311(2):495-505.
  • 9JIANG Da-qing,YUAN Cheng-jun.The Positive Properties of Green’s Function for Dirichlet-Type Boundary ValueProblems of Nonlinear Fractional Differential Equations and Its Application[J].Nonlinear Analysis Series A:Theory,Methods and Applications,2010,72(2):710-719.
  • 10Agarwal R P,O’Regan D,Staněk S.Positive Solutions for Dirichlet Problems of Singular Nonlinear FractionalDifferential Equations[J].J Math Anal Appl,2010,371:57-68.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部