摘要
对线性和几何非线性有限元离散体系,建立了放松单元间协调约束的不协调元和杂交变分原理.由此建立了精化不协调元和精化杂交元方法,保证了收敛、无病态和高精度.
Variational principles with relaxed interelement continuity requirement are developedfor linear and nonlinear analysis, and refined nonconforming element and refined hybrid elementmethods which can ensure convergence and improve accuracy and avoid ill-conditions are given.
出处
《大连理工大学学报》
CAS
CSCD
北大核心
1999年第2期150-157,共8页
Journal of Dalian University of Technology
基金
国家自然科学基金!19372012
关键词
有限元
变分原理
精化杂交元
离散化体系
精化元
finite element method
variational principles
convergence(mathematics) /refinednonconforming clement
refined hybrid element
geometrically nonlinear analysis