期刊文献+

有限元离散化变分原理及精化元法 被引量:2

Variational principles for finite element methods and refined element methods
下载PDF
导出
摘要 对线性和几何非线性有限元离散体系,建立了放松单元间协调约束的不协调元和杂交变分原理.由此建立了精化不协调元和精化杂交元方法,保证了收敛、无病态和高精度. Variational principles with relaxed interelement continuity requirement are developedfor linear and nonlinear analysis, and refined nonconforming element and refined hybrid elementmethods which can ensure convergence and improve accuracy and avoid ill-conditions are given.
作者 陈万吉
出处 《大连理工大学学报》 CAS CSCD 北大核心 1999年第2期150-157,共8页 Journal of Dalian University of Technology
基金 国家自然科学基金!19372012
关键词 有限元 变分原理 精化杂交元 离散化体系 精化元 finite element method variational principles convergence(mathematics) /refinednonconforming clement refined hybrid element geometrically nonlinear analysis
  • 相关文献

参考文献26

二级参考文献10

共引文献68

同被引文献36

  • 1SZE K Y, CHAN W K, PIAN T H H. An eightnode hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells[J]. International Journal for Numerical Methods in Engineering, 2002,55:853-878.
  • 2XU X, CAI R F. A new plate shell element of 16 nodes 40 degrees of freedom by relative displacement method[J]. Communications in Numerical Methods in Engineering, 1993,9 : 15-20.
  • 3TAYLOR R L, BERSESFORD P J, WILSON E L. A non-conforming element for stress analysis[J]. International Journal for Numerical Methods in Engineering, 1976,10 :1211-1219.
  • 4WILSON E L, IBRAHIMBEGOVIC A. Use of incompatible displacement modes for the calculation of element stiffnesses or stresses[J]. Finite Elements in Analysis and Design, 1990,7 : 229-241.
  • 5CHOI C K, LEE T Y, CHUNG K Y. Direct modification for non-conforming elements with drilling DOF [J]. International Journal for Numerical Methods in Engineering, 2002,55 : 1463-1476.
  • 6WU C C, HUANG Y Q, RAMM E. A further study on incompatible models: revise-stiffness approach and completeness of trial functions[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190 : 5923-5934.
  • 7WU C C, HUANG M G, PlAN T H H. Consistency condition and convergence criteria of incompatible elements: general formulation of incompatible functions and its application [J]. Computers & Structures, 1987,27 : 639-644.
  • 8KIMKD, LIUGZ, HANSC. Aresultant 8-node solid-shell element for geometrically nonlinear analysis[J]. Computational Mechanics ,2005,35:315-331.
  • 9WILSON E L, TAYLOR R L, DOHERTY W P, et al. Incompatible Displacement Models [A]. In: Fenves SJ. Numerical and Computer Methods in Structural Mechanics [M]. New York: Academic Press Inc,1973.
  • 10KLINKEL S, WAGNER W. A geometrical non-linear brick element based on the EAS-method[J]. International Journal for Numerical Methods in Engineering, 1997,40 : 4529-4545.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部