摘要
The effects of minor Sr, Sn and Sc addition on the as-cast microstructure and mechanical properties of the ZA84 magnesium alloy were compared. The results indicate that addition of 0.1%Sr, 0.5%Sn or 0.3%Sc (mass fraction) to the ZA84 alloy can refine the grains of the alloy. Furthermore, addition of 0.1%Sr to the ZA84 alloy does not obviously change the morphology and distribution of Mg32(Al,Zn)49 phase. However, addition of 0.5%Sn or 0.3%Sc not only refines and modifies the Mg32(Al,Zn)49 phase but also suppresses the formation of Mg32(Al,Zn)49 phase, especially with the addition of 0.3%Sc. Furthermore, addition of 0.1%Sr, 0.5%Sn or 0.3%Sc to the ZA84 alloy improves the tensile properties at room temperature and 150℃, especially with the addition of 0.1%Sr and 0.3%Sc. However, addition of 0.1%Sr is not beneficial to the creep properties, and addition of 0.5%Sn has no obvious influence on the creep properties. Oppositely, addition of 0.3%Sc to the ZA84 alloy greatly improves the creep properties.
The effects of minor Sr, Sn and Sc addition on the as-cast microstructure and mechanical properties of the ZA84 magnesium alloy were compared. The results indicate that addition of 0.1%Sr, 0.5%Sn or 0.3%Sc (mass fraction) to the ZA84 alloy can refine the grains of the alloy. Furthermore, addition of 0.1%Sr to the ZA84 alloy does not obviously change the morphology and distribution of Mg32(Al,Zn)49 phase. However, addition of 0.5%Sn or 0.3%Sc not only refines and modifies the Mg32(Al,Zn)49 phase but also suppresses the formation of Mg32(Al,Zn)49 phase, especially with the addition of 0.3%Sc. Furthermore, addition of 0.1%Sr, 0.5%Sn or 0.3%Sc to the ZA84 alloy improves the tensile properties at room temperature and 150℃, especially with the addition of 0.1%Sr and 0.3%Sc. However, addition of 0.1%Sr is not beneficial to the creep properties, and addition of 0.5%Sn has no obvious influence on the creep properties. Oppositely, addition of 0.3%Sc to the ZA84 alloy greatly improves the creep properties.
基金
Project(50725413) supported by the National Natural Science Foundation in China
Project(2007CB613704) supported by the National Basic Research Program of China
Project(2006AA4012-9-6) supported by the Chongqing Science and Technology Commission,China
Project(KJ090628) supported by the Chongqing Education Commission,China