摘要
The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the particles in the process of the isothermal treatment was also discussed.The results show that the microstructure of the as-cast alloy consists ofα-Mg solid solution, Mg5RE and Mg24RE5(Gd,Y,Nd)phase.After being extruded with an extrusion ratio of 14:1 at 380℃,the microstructure of Mg-Gd alloy changes from developed dendrites to near-equiaxed grains.The liquid volume fraction of the semisolid slurry gradually increases with elevating isothermal temperature or prolonging isothermal time during the partial remelting.To obtain an ideal semisolid slurry,the optimal process parameters for the Mg-Gd alloy should be 630℃for isothermal temperature and 30 min for the corresponding time,respectively,where the volume fraction of the liquid phase is 52%.
The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the particles in the process of the isothermal treatment was also discussed.The results show that the microstructure of the as-cast alloy consists ofα-Mg solid solution, Mg5RE and Mg24RE5(Gd,Y,Nd)phase.After being extruded with an extrusion ratio of 14:1 at 380℃,the microstructure of Mg-Gd alloy changes from developed dendrites to near-equiaxed grains.The liquid volume fraction of the semisolid slurry gradually increases with elevating isothermal temperature or prolonging isothermal time during the partial remelting.To obtain an ideal semisolid slurry,the optimal process parameters for the Mg-Gd alloy should be 630℃for isothermal temperature and 30 min for the corresponding time,respectively,where the volume fraction of the liquid phase is 52%.
基金
Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology supporting Program of China
Project(2007KZ05)supported by the Science and Technology Foundation of Changchun City,China
Project supported by"985 Project"of Jilin University,China
Project supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization(2008)