期刊文献+

热弹性效应分析与机床进给系统热动态特性建模 被引量:20

Analysis on Thermoelastic Domino Effect and Modeling on Thermal Dynamic Characteristic of Machine Tools Feed System
下载PDF
导出
摘要 通过一维杆的一维传热的分组显式数值求解,分析热弹性效应的存在及规律,得出随着时间的增长,温升—热变形之间的关系会逐渐趋近稳态,但不可能获得绝对的稳态;在传热过程中,随着距离增加,温度衰减很快,离热源越远的点的热弹性效环应越窄。提出用非线性时序模型与前向神经网络相结合的模型(Nonlinear auto-regressive moving average neural network with exogenousinputs,NARMAX-NN)来辨识热弹性效应。用NARMAX-NN模型对高速进给系统试验台的热动态特性进行建模,获得良好的效果。此方法比多变量回归模型、反馈神经网络模型及广义最小二乘输出误差模型有更好的精度和鲁棒性,能精确地对复杂结构、多热源的时变非线性热误差特性进行建模和预测。 Through group explicit numerical solution approach of unidimensional heat transferring, the existence and law of thermoelastic effect are analyzed. With the increase of time, the relationship between temperature rise and thermal deformation tends to steady state gradually, but absolute steady state cannot be reached. In the process of heat transfer, with the increase of distance, the temperature decreases rapidly, and the more distant a point from the heat source is, the narrower the thermoelastic effect loop of the point will be. A model which combines nonlinear time series models with neural network models (NARMAX-NN) is put forward to identify the thermoelastic effect. By using the model, the thermal dynamic model of high-speed feed system is built. Compared with multi-variable regression model, feedback neural network model and generalized least squares-output error model, this model has better accuracy and robustness and can accurately carry out modeling and prediction for time-varying and nonlinear thermal error characteristics under machining condition of complex structure and multi-heat sources.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第15期191-198,共8页 Journal of Mechanical Engineering
基金 国家重点基础研究发展计划(973计划 2005CB724101) 国家自然科学基金(50575087 50675076)资助项目
关键词 热弹性效应 非线性时序神经网络模型 进给系统 系统辨识 热误差建模 Thermoelastic domino effect Nonlinear auto-regressive moving average neural network with exogenous inputs Feed system System identification Modeling of thermal error
  • 相关文献

参考文献8

  • 1FRASER S,ATTIA MH,OSMAN MOM.Modeling,identification and control of thermal deformation of machine tool structures,Part I:Concept of generalized modeling[J].ASME J.Manuf.Sci.Eng.,1998,120(3):623-631.
  • 2YANG Hong,NI Jun.Dynamic modeling for machine tool thermal error compensation[J].ASME Trans.Journal of Manufacturing Science and Engineering,2003,125:245-254.
  • 3YANG Hong,NI Jun.Dynamic neural network modeling for nonlinear,nonstationary machine tool thermally induced error[J].International Journal of Machine Tools & Manufacture,2005,45:455-465.
  • 4余佐平,陆煜.传热学[M].北京:高等教育出版社,1999.
  • 5XIA Junyong,HU Youmin,WU Bo et al.A numerical solution and simulation of the thermal dynamic characteristic for ball-screw[J].Frontiers of Mechanical Engineering in China,2008,3(1):28-36.
  • 6庞世伟,于开平,邹经湘.基于时变NARMA模型的非线性时变系统辨识[J].工程力学,2006,23(12):25-29. 被引量:5
  • 7YANG Jianguo,YUAN Jianxia,NI Jun.Thermal error mode analysis and robust modeling for error compensation on a CNC turning center[J].International Journal of Machine Tools & Manufacture,1999,39:Journal of Machine Tools & Manufacture,1999,39:1 367-1 381.
  • 8XIA Junyong,HU Youmin,WU Bo,et al.Testing research on the thermal error characteristic of ballscrew feed system[M]// Advanced Design and Manufacturing to Gain a Competitive Edge (ICADAM),London:Springer,2008.

二级参考文献11

  • 1Yingwei L,Sundararajan N,Saratchandran P.Identification of time-varying nonlinear systems using minimal radial basis function neural networks[J].IEE Proceedings of Control Theory Applications,1997,144(2):202~208.
  • 2Apostolikas G,Tzafestas S.On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structure-adaptation[J].Mathematics and Computers in Simulation,2003,63(1):1~13.
  • 3Nordsjo A E,Zetterberg L H.A reeursive prediction error algorithm for identification of certain time-varying nonlinear systems[J].IEEE International Conference on Acoustics,Speech,and Signal Processing,1999,3:1305~1308.
  • 4Boland M D,Zoubir A M.Identification of time-varying nonlinear systems with application to knock detection in combustion engines[J].IEEE Region 10 Annual Conference Speech and Image Technologies for Computing and Telecommunications,1997,2:799~802.
  • 5Green M,Zoubir A M.A search for parsimonious basis sequence approximation of time-varying nonlinear systems[J].IEEE international Symposium on Circuits and Systems,2000,1:148~151.
  • 6Nordsjo A E,Zetterberg L H.Identification of certain time-varying nonlinear wiener and hammerstein systems[J].IEEE Transactions on Signal Processing,2001,49(3):577~592.
  • 7Liu G P,Kadirkamanathan V,Billings S A.On-line identification of nonlinear systems using Volerra poly-nomial basis function neral networks[J].Neural Networks,1998,11(9):1645~1657.
  • 8Leontraritis I J,Billings S A.Input-output parametric models for non-linear systems[J].International Journal of Control,1985,41(2):303~344.
  • 9邹经湘,于开平,杨炳渊.时变结构的参数识别方法[J].力学进展,2000,30(3):370-377. 被引量:34
  • 10顾成奎,王正欧.基于前向神经网络的非线性时变系统辨识[J].管理科学学报,2001,4(3):36-39. 被引量:7

共引文献5

同被引文献181

引证文献20

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部