期刊文献+

结合Gabor小波和监督保局投影的人耳识别 被引量:6

Human Ear Recognition Based on Gabor Wavelet and Supervised Locality Preserving Projection
下载PDF
导出
摘要 针对人耳识别中人耳的角度变化这个难点问题,提出一种结合Gabor小波和监督保局投影的人耳识别算法.由于Gabor特征维数高、冗余大,首先通过统计样本的边缘点再采样的方法对人耳进行稀疏的描述,然后利用类别可分离性判据评价Gabor展开系数的分类能力,选择最有利于识别的Gabor展开系数构造新的Gabor特征.在人耳库中的实验结果表明,采用文中算法提取的Gabor特征维数少、鉴别能力强,结合监督保局投影进行识别取得了很高的识别率,对于人耳角度的变化具有良好的鲁棒性. A new ear recognition algorithm based on Gabor wavelet and supervised locality preserving projection (SLPP) is presented in this paper to solve the difficult problem of ear recognition with ear pose variation. Considering the redundancy in the high dimensional Gabor feature vectors, ear images are first described sparsely by statistical edge points sampling. Then a criterion with discriminating power is employed to evaluate the classification ability of the Gabor coefficients. The Gabor coefficients most favorable to the recognition are selected to construct new Gabor features. Our experiment results on ear database show that the proposed method produces less number of Gabor features and achieves high recognition rate with supervised locality preserving projection. The method is also robust to the ear pose variation .
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第8期1259-1265,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60903127)
关键词 人耳识别 GABOR小波 流形学习 监督保局投影 human ear recognition Gabor wavelet manifold learning supervised locality preserving projection
  • 相关文献

参考文献11

  • 1Lades M, Vorbriiggen J C, Buhmann J, et al. Distortion invariant object recognition in the dynamic link architecture [J]. IEEE Transactions on Computers, 1993, 42 (3): 300- 311.
  • 2Wiskott L, Fellous J M, Kruger N, et al. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7):775-779.
  • 3Liu C J, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition [J]. IEEE Transactions on Image Processing, 2002, 11(4): 467-476.
  • 4Yang P, Shan S G, Gao W, et al. Face recognition using Aria-Boosted Gabor features [C] //Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. Seoul: IEEE Computer Society Press, 2004: 356-361.
  • 5谢朝霞,穆志纯,谢建军.基于LLE的多姿态人耳识别[J].智能系统学报,2008,3(4):321-327. 被引量:6
  • 6Zheng Z L, Yang F, Tan W, et al. Gabor feature based face recognition using supervised locality preserving projection [J]. Signal Processing, 2007, 87(10): 2473-2483.
  • 7Lee T S. Image representation using 2D Gabor wavelets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959-971.
  • 8Lee C J, Wang S D. Fingerprint feature extraction using Gabor filters[J]. Electronics Letters, 1999, 35(4): 288-290.
  • 9He X F, Niyogi P. Locality preserving projeclions [C] // Proceedings of Advances in Neural Information Processing Systems. Vancouver: MIT Press, 2003:153-160.
  • 10Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.

二级参考文献14

  • 1[2]IANNARELLI A.Ear identification[M].Fremont:Paramount Publishing Company,1989.
  • 2[3]MORENO B,A(A)NCHEZ (A),V(E)LEZ J.Use outer ear images for personal identification in security applications[C]// Proceedings of IEEE 33rd Annual International Carnahan Conference on Security Technology.Madrid,Spain,1999.
  • 3[4]BURGE M,BURGE W.Ear biometrics in computer vision[C]//Proceedings of the 15th International Conference of Pattern Recognition.Barcelona,Spain,2000.
  • 4[5]HURLEY J,NIXON M,CARTER N.Force field energy functions for image feature extraction[J].Image and Vision Computing,2002,20(5-6):311-317.
  • 5[6]HURLEY D,NIXON M,CARTER J.A new force field transform for ear and face recognition[C]// Proceedings of the IEEE International Conference on Image Processing.Vancover,Canada,2000.
  • 6[7]刘炜杰.外耳图像识别研究[M].北京:北京科技大学出版社,2002.
  • 7[8]CHANG K,BOWYER K W,SARKAR S,VICTOR B.Comparison and combination of ear and face images in appearance-based biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1160-1166.
  • 8[10]ZHANG Haijun,MU Zhichun,QU Wei,LIU Leiming,ZHANG Chengyang.A novel approach for ear recognition based on ICA and RBF network[C]// Proceedings of 2005 International Conference on Machine Learning and Cybernetics.Guangzhou,China,2005.
  • 9[12]LU H M,FAINMAN Y,ROBERT H N.Image manifolds[C]//Proceedings of SPIE.San Jose,CA,USA,1998.
  • 10[13]SEUNG H S,DANIEL D L.The manifold ways of perception[J].Science,2000,290:2268-2269.

共引文献5

同被引文献75

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部