期刊文献+

基于最优控制方法的聚合物驱注入浓度优化 被引量:5

Optimization of injection concentration for polymer flooding based on optimal control approach
下载PDF
导出
摘要 针对聚合物驱提高原油采收率技术,建立了确定最佳注入浓度的最优控制模型。性能指标为一定时间内原油开采所获得的利润,约束条件包括非线性渗流力学偏微分方程组、积分不等式约束和控制变量的边界约束。利用二维分布参数系统最优控制的必要条件获得了原最优控制问题的伴随问题以及目标泛函的梯度。给出了求解该最优控制问题的一种基于梯度的数值方法,并通过研究实例表明了所提出方法的有效性。 An optimal control model is presented for determining the best injection strategies of polymer flooding in enhanced oil recovery.The performance criterion of the optimal control problem(OCP)is the profits gained from oil recovered over a given time,which subjected to the nonlinear partial differential equations of porous media flow,integral inequality constraints and boundary constraints of control variables.The adjoint problem of the OCP and the gradient of the objective functional are derived by using the necessary conditions of optimal control for a 2-D distributed parameter system.A gradient based method is given for solving the OCP numerically and the results of a study case illustrate the effectiveness of the proposed method.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第8期1971-1977,共7页 CIESC Journal
基金 国家自然科学基金项目(60974039) 国家重大科技专项项目(20082X05011)~~
关键词 最优控制 分布参数系统 聚合物驱 optimal control distributed parameter system polymer flooding
  • 相关文献

参考文献7

二级参考文献41

  • 1钟万勰,朱建平.对差分法时程积分的反思[J].应用数学和力学,1995,16(8):663-668. 被引量:15
  • 2叶继根,齐与峰,郭尚平,方义生.一种多组分相平衡计算的优化方法[J].石油勘探与开发,1996,23(2):84-87. 被引量:3
  • 3刘泽俊,孙智,宋考平.有界地层非牛顿渗流试井解释模型[J].大庆石油地质与开发,1996,15(3):63-66. 被引量:12
  • 4宋考平,祝俊峰,刘泽俊,孙智,王玉琢.多区复合油藏非牛顿幂律流体试井解释[J].石油学报,1997,18(2):78-83. 被引量:33
  • 5[1]CONN A R, GOULD N I M, TOINT Ph L. Global convergence of a class of trust region algorithm for optimization with simple bounds [J]. SIAM J Numer Anal, 1988, 25(3): 433-460.
  • 6[2]CONN A R, GOULD N I M, TOINT Ph L. Testing a class of methods for solving minimization problems with simple bounds on the variables [J]. Math Comp, 1988, 50(2): 399-430.
  • 7[3]LIANG Xi-ming, XU Cheng-xian. A trust region algorithm for bound constrained minimization [J]. Optimization, 1997, 41(3): 279-289.
  • 8[4]CONN A R, GOULD N I M, TOINT Ph L. LANCELOT: A Fortran package for large-scale nonlinear optimization (reslease A) [A]. Springer Series in Computational Mathematics 17 [C]. New York: Springer-Verlag, 1992.
  • 9[5]NASH S G, POLYAK R, SOFER A. A numerical comparison of barrier and modified barrier methods for large-scale bound-constrained optimization [A]. Large Scale Optimization: State of the Art [C]. B V: Kluwer Academic Publishers, 1994. 319-338.
  • 10[6]PYTLAK R. An efficient algorithm for large-scale nonlinear programming problems with simple bounds on the variables [J]. SIAM J Optim, 1998, 8(2): 532-560.

共引文献42

同被引文献36

  • 1高春凤,江辉,彭建春.基于机会约束规划的发电商报价策略[J].电网技术,2005,29(19):105-108. 被引量:11
  • 2沈平平,袁士义,邓宝荣,宋杰,沈奎友.非均质油藏化学驱波及效率和驱替效率的作用[J].石油学报,2004,25(5):54-59. 被引量:36
  • 3李俊刚,杨付林,杨希志.高质量浓度聚合物注入时机对驱油效果的影响[J].大庆石油学院学报,2005,29(5):16-18. 被引量:5
  • 4范海军,张丽丽.油田开发措施配置的最优控制建模及求解[J].数学的实践与认识,2005,35(12):78-82. 被引量:1
  • 5Ramirez W F, Fathi Z, Cagnol J L. Optimal injection policies for enhanced oil recovery: Part 1 -- Theory and computational strategies[J]. Society of Petroleum Engineers Journal, 1984, 24(3): 328-332.
  • 6Fathi Z, Ramirez W F. Uses of optimal control theory for computing optimal injection policies for enhanced oilrecovery[J]. Automatica, 1986, 22(1): 33-42.
  • 7Ramirez W F. Application of Optimal Control to Enhanced Oil Recovery[M]. New York: Elsevier Science & Technology Publishers, 1987.
  • 8Sudaryanto B, Yortsos Y C. Optimization of fluid front dynamics in porous media using rate control[J]. Physics of Fluids, 2000, 12(7): 1656 1670.
  • 9Brouwer D R, Jansen J D. Dynamic optimization of water flooding with smart wells using optimal control theory[C]// SPE 13th European Petroleum Conference, Aberdeen, Scotland, 2002:1 14.
  • 10Sarma P, Aziz K, Durlofsky L J. Implementation of adjoint solution for optimal control of smart wells[C]// 2005 SPE Resevoir Simulaiton Symposium, Houston, Texas, 2005:1 -17.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部