期刊文献+

支持向量数据描述性能优化及其在非高斯过程监控中的应用 被引量:3

Performance optimization of SVDD and its application in non-Gaussian process monitoring
下载PDF
导出
摘要 针对传统统计过程监控假设数据服从高斯分布的不足,提出了基于混合信号模型(MSM)及支持向量数据描述(SVDD)的非高斯过程监控方法。混合信号模型中包含了高斯、非高斯信号源及过程测量噪声,给出了基于混合信号模型的过程测量变量分解方法、统计量的定义及其分布。针对非高斯信号源监控,提出了SVDD核参数化的一般形式及其优化算法。工业实际数据中的应用表明,通过SVDD核函数优化,可准确地对数据的非高斯特性进行刻画,及时地发现工业过程中出现的异常情况。 A general mixture signal model (MSM) together with support vector data description (SVDD) are proposed to address the monitoring of non-Gaussian processes.Mixture signal model involves Gaussian,non-Gaussian and measurements noises.Methods to extract and monitor the corresponding mixture signals are presented.A general SVDD kernel function parameterization and optimization approach is proposed to monitor the non-Gaussian signal sources.Industrial application demonstrate that the general proposed kernel function is capable of characterizing the non-Gaussian behaviors encapsulated in process data and detect abnormal events promptly.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第8期2072-2077,共6页 CIESC Journal
基金 国家自然科学基金项目(60904039)~~
关键词 支持向量数据描述 微粒群优化 统计监控 非高斯过程 support vector data description particle swarm optimization statistical monitoring non-Gaussian process
  • 相关文献

参考文献1

二级参考文献13

  • 1Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review of process fault detection and diagnosis, part Ⅱ: qualitative models and search strategies. Computers and Chemical Engineering, 2003, 27(3): 313-326
  • 2Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Network, 2000, 13(4-5): 411 - 430
  • 3Zou L, Zhu S A, He B. ICA-based EEG spatio-temporal dipole source localization: a model study. In: Proceedings of the 3rd International Symposium on Neural Networks. Chengdu, China: Springer, 2006. 566-572
  • 4Mantini D, Perrucci M G, Cugini S, Ferretti A, Romani G L, Gratta C D. Complete artifact removal for EEC recorded during continuous fMRI using independent component analysis. Neuroimage, 2007, 34(2): 598-607
  • 5Rennie S J, Aarabi P, Frey B J. Variational probabilistic speech separation using microphone arrays. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(1): 135-149
  • 6Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. American Institute of Chemical Engineers Journal, 2003, 49(4): 969-976
  • 7Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis. Journal of Process Control, 2004, 14(5): 467-485
  • 8Lee J M, Qin S J, Lee I B. Fault detection and diagnosis based on modified independent component analysis. American Institute of Chemical Engineers Journal, 2006, 52(10): 3501-3514
  • 9Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54(1): 45-66
  • 10Jutten C, Herault J. Blind separation of sources, part Ⅰ: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1-10

共引文献15

同被引文献25

  • 1王立坤,赵晋云,付松广,谭东杰,李健,靳世久.基于神经网络的管道泄漏声波信号特征识别[J].仪器仪表学报,2006,27(z3):2247-2249. 被引量:15
  • 2耿艳峰,张朝晖.气体长输管线泄漏检测技术[J].仪器仪表学报,2001,22(z1):328-330. 被引量:13
  • 3林伟国,郑志受.基于动态压力信号的管道泄漏检测技术研究[J].仪器仪表学报,2006,27(8):907-910. 被引量:23
  • 4FanHua Ma,Yu Wang. Development and Validation of an On-lineHydrogen-Natural Gas Mixing System for Internal Combustion En-gine Testing[Z].SAE Paper No. 2008-01-1580,2008.
  • 5Qin S J. Statistical process monitoring:basics and beyond[J]. Jour-nal of Chemometrics,2003,17(8/9):480-502.
  • 6Tax D M J,Duin R P W. Support Vector Data Description[J]. Ma-chine learning,2004,54(1):45-66.
  • 7Tax O M J,Duin K P W. Uniform object generation for optimizingone-class classifiers [J]. Journal of Machine learning Research,2002,2(2):155-173.
  • 8J Platt. Sequential minimal optimization:A fast algorithm for train-ing support vector machines [C]. Technical Report MST-TK-98-14. Microsoft Research,1998-4-21.
  • 9BoserB,Guyonl,Vapnik V. A taining algorithm for optimal marginclassifiers[C]//Proceedings of the 5th Annual ACM Workshop onComputational Learning Theory ACM Press,1992:144-152.
  • 10Tsang I,Kwok J,Cheung P. Core vector machines:Fast SVMtraining on very large data sets [J]. Journal of Machine LearningResearch,2005,6:363-392.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部