期刊文献+

基于神经网络的智能下肢假肢自适应控制 被引量:8

Adaptive control for intelligent lower limb prosthesis based on neural network
下载PDF
导出
摘要 下肢假肢的膝关节是一种具有高度非线性、时变、强耦合的阻尼系统,传统控制方法很难达到良好控制效果.针对这一问题,提出将神经网络(NN)应用于下肢假肢控制.以学习矢量量化(LVQ)神经网络为基础,提出神经网络模型参考自适应控制方法.该方法通过选择适当的参考模型和自适应算法,利用参考模型输出与实际系统输出之间的误差信号,由自适应算法计算当前的控制量以控制智能下肢假肢,达到自适应控制的目的.该方法不需要进行性能指标的变换,容易实现且自适应速度快,仿真结果表明了该方法的有效性. The knee joint of lower limb prosthesis is a damp system with high nonlinearity,time-varying and strong coupling,and the traditional control method can hardly achieve good performance.Aimed at the problem,a neural network(NN)-based model reference adaptive control method was proposed based on the learning vector quantization(LVQ) neural network.Based on an appropriate reference model and an adaptive algorithm,the current control variable was calculated by using the error between the reference model output and the actual system output in order to control the intelligent lower-limb prosthesis and achieve the adaptive control.The method does not require the transformation of performance criteria,and is fast and easy to implement.Simulation results showed the validity of the method.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第7期1373-1376,1381,共5页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2008AA04Z212) 国家自然科学基金资助项目(60874102 60705010) 浙江省自然科学基金资助项目(Y1080854 Y1090761) 浙江省教育厅基金资助项目(Y200907366 Y200805157)
关键词 智能下肢假肢 自适应控制 学习矢量量化(LVQ) 神经网络(NN) 参考模型 intelligent lower limb prosthesis adaptive control learning vector quantization(LVQ) neural network(NN) reference model
  • 相关文献

参考文献13

  • 1GONG Si-yuan, YANG Peng, SONG Liang, et al. Study on development platform of active lower-limb prosthesis based on MATLAB [C]// Proceedings of the 20th Chinese Control and Decision Conference. Yantai, China: IEEE, 2008: 3542-3545.
  • 2贺光辉,谭冠政,曾庆冬,钟金.智能仿生人工腿位置伺服控制系统的设计[J].计算机测量与控制,2007,15(1):52-55. 被引量:4
  • 3王人成,沈强,金德闻.假肢智能膝关节研究进展[J].中国康复医学杂志,2007,22(12):1093-1094. 被引量:16
  • 4杨义勇,王人成,王延利,金德闻,田尚云.新型仿生膝关节的机构设计与仿真研究[J].中国机械工程,2008,19(1):72-74. 被引量:10
  • 5ATSUO O, GORO O, KAZUNORI H, et al. Design of lower limb prosthesis with contact pressure adjustment by MR fluid [C]// Proceedings of the 30th Annual International IEEE EMBS Conference. Vancouver, Canada: IEEE, 2008: 330-333.
  • 6POPOVIC D B, OGUZTORELI M N, STEIN R B. Optimal control for an active above-knee prosthesis with two degrees of freedom [J]. Journal of Biomech, 1995, 28(1): 89 - 98.
  • 7DANIEL Z, BEATRICE S, GERHARD S. Finite-state control of a trans-femoral (TF) [J]. IEEE Transactions on Control Systems Technology, 2002, 10(3): 408 -420.
  • 8POPOVIC D B, TOMOVIC R, TEPAVAC D. Control aspects of active above-knee prosthesis[J]. International Journal of Man-Machine Studies, 1991, 35(6) : 751 - 767.
  • 9VOJISLAV D K, DEJAN P. Feedback error learning neural network for trans-femoral prosthesis[J], IEEE Transactions on Rehabilitation Engineering, 2000, 8(1): 71- 80.
  • 10KOSTOV A, ANDREWS B J, POPOVIC D B, et al. Machine learning in control of functional electrical stimulation systems for locomotion[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(6) : 541 - 551.

二级参考文献32

共引文献24

同被引文献120

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部