摘要
A series of x (Fe,Ni)/Al2O3 catalysts (x = 2-12 wt%) were prepared using incipient wetness method and studied for the conversion of synthesis gas to light olefins.6 wt%(Fe,Ni)/Al2O3 catalyst was found to be the optimal catalyst for the production of C2-C4 olefins.The effects of calcination behaviors and operational conditions on the catalytic performance of the optimal catalyst were investigated.The best operational conditions were molar feed ratio H2/CO = 2/1,T = 260 ℃,gas hourly space velocity (GHSV) = 2600 h^-1 and the pressure of 3 bar.Character-izations of both precursors and catalysts were carried out using X-ray diffraction (XRD),temperature-programmed reduction (TPR),scanning electron microscopy (SEM),N2-adsorption-desorption measurement,thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC).
A series of x (Fe,Ni)/Al2O3 catalysts (x = 2-12 wt%) were prepared using incipient wetness method and studied for the conversion of synthesis gas to light olefins.6 wt%(Fe,Ni)/Al2O3 catalyst was found to be the optimal catalyst for the production of C2-C4 olefins.The effects of calcination behaviors and operational conditions on the catalytic performance of the optimal catalyst were investigated.The best operational conditions were molar feed ratio H2/CO = 2/1,T = 260 ℃,gas hourly space velocity (GHSV) = 2600 h^-1 and the pressure of 3 bar.Character-izations of both precursors and catalysts were carried out using X-ray diffraction (XRD),temperature-programmed reduction (TPR),scanning electron microscopy (SEM),N2-adsorption-desorption measurement,thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC).