期刊文献+

运用改进的SPEA2算法优化网格工作流调度方法

An optimization approach to grid workflow scheduling using improved SPEA2 algorithm
原文传递
导出
摘要 提出了一种QoS约束的多目标优化的网格工作流调度算法ISPEA2,该算法基于表达结构丰富的AGWL网格工作流模型,在SPEA2算法中引入约束检测对网格工作流调度问题进行优化,克服了当前网格工作流调度算法中大多只考虑DAG结构的网格工作流、涉及QoS参数较少及将多QoS参数聚合成一个单目标函数进行优化调度的缺陷,可供决策者根据用户的实际需求从产生的Pareto优化解集中选择最终的满意解。通过与采用原SPEA2设计的网格工作流调度算法OSPEA2的比较,表明ISPEA2算法所获得的Pareto优化解集都是满足QoS约束的非支配解,且获得了更优的平均结果。 A multi-objective optimal grid workflow scheduling algorithm with QoS constraints,named ISPEA2 was proposed.The proposed algorithm,based on the rich-construct abstract grid workflow language(AGWL)grid workflow model,introduces constraints detection into strength Pareto-evolutionary algorithm 2(SPEA2),to optimize the grid workflow scheduling problem.The algorithm overcomes the following drawbacks:only considering DAG structure of the grid workflow model,fewer multi-dimensional QoS parameters,and aggregating the multi-dimensional QoS parameters into a single objective function for optimal scheduling.Decision makers could choose a satisfactory solution according to the user's preferences from the produced Pareto optimal solutions.Compared with a grid workflow scheduling algorithm OSPEA2 based on the original SPEA2,the experimental results showed that all of the Pareto-optimal solutions were obtained by ISPEA2,which were non-dominated solutions of satisfying the QoS constraints and better mean result of solutions than OSPEA2.
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第5期12-16,23,共6页 Journal of Shandong University(Engineering Science)
基金 江西省自然科学基金资助项目(2009GQS0062)
关键词 服务质量 网格工作流 调度 SPEA2 quality of service(QoS) grid workflow scheduling strength pareto evolutionary algorithm 2
  • 相关文献

参考文献16

  • 1苑迎春,李小平,王茜,王克俭.成本约束的网格工作流时间优化方法[J].计算机研究与发展,2009,46(2):194-201. 被引量:25
  • 2姚磊,戴冠中,张慧翔,任帅.QoS约束下基于双向分层的网格工作流调度算法[J].计算机科学,2009,36(9):24-27. 被引量:4
  • 3王勇,胡春明,杜宗霞.服务质量感知的网格工作流调度[J].软件学报,2006,17(11):2341-2351. 被引量:60
  • 4JIA Yu, RAJKUMAR Buyya. Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms [ J ]. Scientific Programming, 2006, 14:217-230.
  • 5HU Chunhua, WU Min, LIU Guoping, et al. QoS scheduling algorithm based on hybrid particle swarm optimization strategy for grid workflow [ C ]// Proceedings the Sixth International Conference on Grid and Cooperative Computing ( GCC2007 ). Los Alamitos, CA, USA: IEEE Computer Society, 2007 : 330-337.
  • 6BENEDICT S, VASUDEVAN V. Scheduling of scientific workflows using simulated annealing algorithm for computational grids [ J ]. International Journal of Soft Computing, 2007, 2(5) :606-611.
  • 7BENEDICT S, VASUDEVAN V. Improving scheduling of scientific workflows using tabu search for computational grids[J]. Information Technology Journal, 2008,7( 1 ): 91-97.
  • 8Khaled Ahsan Talukder A K M, Michael Kirley, Rajkumar Buyya. Multiobjective differential evolution for workflow execution on grid [ C/OL ]//Proceedings the 5th international workshop on Middleware for grid computing ( MGC' 07 ). New York, USA: ACM, 2007 [ 2010-01- 08 ]. http ://cloudbus. org/papers/MultiObjective-Workflow-MGC2007, pdf.
  • 9于明远,朱艺华,梁荣华.基于混合微粒群算法的网格服务工作流调度[J].华中科技大学学报(自然科学版),2008,36(4):45-47. 被引量:9
  • 10李金忠,夏洁武,曾劲涛,朱兵,刘昌鑫.网格工作流调度算法研究综述[J].计算机应用研究,2009,26(8):2816-2820. 被引量:6

二级参考文献89

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部