期刊文献+

基于混合距离学习的双指数模糊C均值算法 被引量:23

Double Indices FCM Algorithm Based on Hybrid Distance Metric Learning
下载PDF
导出
摘要 提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的. To learn a good distance metric without any class label information, an algorithm named HDDI-FCM (double indices fuzzy C-means with hybrid distance) is proposed in this paper. In detail, the unknown distance metric is firstly represented as the linear combination of several known distance metrics. Then the algorithm is executed to perform the clustering task as well as leam the most suitable metric simultaneously. To guarantee the convergence of the algorithm, the Steffensen iteration is introduced into the process of updating cluster centers. The selection of parameter for the algorithm is also discussed. The experimental results on a collection of UCI (University of California, Irvine) datasets demonstrate the effectiveness of the proposed algorithm.
作者 王骏 王士同
出处 《软件学报》 EI CSCD 北大核心 2010年第8期1878-1888,共11页 Journal of Software
基金 国家自然科学基金Nos.60773206 60704047 90820002~~
关键词 距离学习 聚类 模糊C均值算法 混合距离 Steffensen迭代法 distance metric learning clustering fuzzy C-means algorithm hybrid distance metric Steffensen iteration method
  • 相关文献

参考文献13

  • 1Wu KL,Yang MS.Alternative c-means clustering algorithms.Pattern Recognition,2002,35(10):2267-2278.[doi:10.1016/S0031-3203(01)00197-2].
  • 2Xing EP,Ng AY,Jordan MI,Russell S.Distance metric learning with application to clustering with side-information.In:Becker S,Thrun S,Obermayer K,eds.Advances in Neural Information Processing Systems 15.Cambridge:MIT Press,2002.505-512.
  • 3Bar-Hillel A,Hertz T,Shental N,Weinshall D.Learning a mahalanobis metric from equivalence constraints.Journal of Machine Learning Research,2005,6:937-965.
  • 4Bilenko M,Basu S,Mooney RJ.Integrating constraints and metric learning in semi-supervised clustering.In:Greiner R,Schuurmans D,eds.Proc.of the 21st Int'l Machine Learning Conf.New York:ACM Press,2004.81-88.
  • 5Ceccarelli M,Maratea A.Improving fuzzy clustering of biological data by metric learning with side information.Int'l Journal of Approximate Reasoning,2008,47(1):45-57.[doi:10.1016/j.ijar.2007.03.008].
  • 6Yang L,Jin R,Sukthankar R,Liu Y.An efficient algorithm for local distance metric learning.In:Proc.of the AAAI.Menlo Park:AAAI Press,2006.543-548.
  • 7Ye JP,Zhao Z,Liu H.Adaptive distance metric learning for clustering.In:Proc.of the CVPR.Washington:IEEE Computer Society Press,2007.1-7.
  • 8Wang XZ,Wang YD,Wang LJ.Improving fuzzy c-means clustering based on feature-weight learning.Pattern Recognition Letters,2004,25(10):1123-1132.[doi:10.1016/j.patrec.2004.03.008].
  • 9Atkinson K.An Introduction to Numerical Analysis.2nd ed.,New York:John Wiley & Sons,1989.
  • 10Hathaway RJ,Bezdek JC,Tucker WT.An improved convergence theorem for the fuzzy c-means clustering algorithms.In:Bezdek J,ed.Proc.of the Analysis of Fuzzy Information,Vol.3.Boca Raton:CRC Press,1987.123-131.

同被引文献276

引证文献23

二级引证文献287

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部