期刊文献+

基于曲波域的指纹增强算法 被引量:3

Fingerprint Image Enhancement Algorithm Based on Curvelet Domain
下载PDF
导出
摘要 指纹增强是指纹识别预处理算法中的关键环节,对算法识别率起到关键的作用。本文提出了一种基于曲波域的指纹增强算法,将指纹图像在曲波域中分解为粗尺度系数和细尺度系数,并分别利用方向滤波器和软阈值函数进行增强和去噪。在曲波域中,利用方向滤波器对粗尺度系数进行增强,同时利用软阈值函数对细尺度系数进行去噪,这使它与传统的基于空域和基于频域的增强方法有本质的区别。在FVC2004指纹数据库上的实验结果表明,对于低质量的指纹图像,该算法比传统算法具有更好的增强和去噪效果,并且执行时间也更短。 Fingerprint enhancement is an essential preprocessing step and it is crucial for the efficiency of the fingerprint recognition algorithm.An algorithm based on curvelet domain is proposed.The input image is decomposed into coarse and fine scales coefficients,and directional filters and soft threshold function are applied fully to enhance image and reduce noise.In curvelet domain,directional filters are used to enhance coarse scales coefficients.Meanwhile,soft threshold function is used to reduce noise of fine scales coefficients,which is much different from the conventional methods based on spatial domain and frequency domain.Experiments are carried out on FVC2004 databases.For fingerprint with bad quality,the results indicate that the proposed algorithm can better enhance fingerprint images and reduce noise than traditional methods,and need less time.
作者 王宪 陶重犇
出处 《光电工程》 CAS CSCD 北大核心 2010年第8期98-103,共6页 Opto-Electronic Engineering
基金 国家自然科学基金项目(60574051)
关键词 指纹增强 曲波域 方向滤波器 软阈值函数 fingerprint enhancement curvelet domain directional filters soft threshold function
  • 相关文献

参考文献9

  • 1Maltoni Davide, Maio Dario, Jain Anil K. Handbook of Fingerprint Recognition: Second Edition [K]. New York: Springer, 2009: 1-506.
  • 2Hong L, Wan Y, Jain A K. Fingerprint image enhancement: algorithm and performance evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1998, 20(8): 777-789.
  • 3Chikkerur S, Cartwright A, Govindaraju V. Fingerprint enhancement using STFT analysis [J]. Pattern Recognition (S0031-3203), 2007, 40(1): 198-211.
  • 4Candes E J, Donoho D L. Curvelets: a Surprisingly Effective Nonadaptive Representation for Objects with Edges [M]// Curves and Surfaces. Nashville: Vanderbilt University Press, 2000: 105-120.
  • 5倪雪,李庆武,陈小刚.基于第二代Curvelet变换的低对比度图像增强[J].计算机工程与应用,2008,44(17):188-190. 被引量:11
  • 6Emmanuel C, Laurent D, David D. Fast Discrete Curvelet Transforms [J]. Multiscale Modeling & Simulation(S 1540-3459), 2005, 5(3): 861-899.
  • 7Yang G Z, Burger P, Firmin D N, et al. Structure Adaptive Anisotropic Image Filtering [J]. Image and Vision Computing (S0262-8856), 1996, 14(2): 135-145.
  • 8Dario Maio, Davide Maltonil. FVC2004 fingerprint databases [EB/OL]. (2003-4-31) [2010-4-20]. http://bias.csr.unibo.it /fvc2004.
  • 9杨小冬,宁新宝,尹义龙.自动指纹识别系统预处理技术及细节特征提取算法的研究[J].南京大学学报(自然科学版),2006,42(4):351-361. 被引量:12

二级参考文献18

  • 1李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 2杨家红,许灿辉,王耀南.基于快速曲波变换的图像去噪算法[J].计算机工程与应用,2007,43(6):31-33. 被引量:7
  • 3Donoho D L,Johnstone I.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika, 1994,81 ( 3 ) : 425-455.
  • 4Hummel R.Image enhancement by histogram transformation[J].Computer Graphics and Image Processing, 1977,6: 184-195.
  • 5Chan H P,Vybomy C J.Digital mammography:ROC studies of the effects of pixel size and unsharp mask filtering on the detection of subtle microcalfications[J].Invest Radiol, 1987,22( 7 ) : 581-589.
  • 6Candes E J,Donoho D l.Curvelets-a snrprisingly effective nonadaptive representation for objects with edges [C]//Rabut C,Cohen A,Sehumaker L L.Curves and Surfaces.Nashville,TN:Vanderbilt University Press,2000:105-120.
  • 7Candes E J,Donoho D L.New tight frames of curvelets and optimal representations of objects with C2 singularities[J].Commun on Pure and Appl Math, 2004,57 ( 2 ) : 219-266.
  • 8Candes E J,Demanet L,Donoho D L.Fast discrete curvelet transforms[R].Applied and Computational Mathematics,California Institute of Technology, 2005 : 1-43.
  • 9尹义龙 谭台哲 詹小四等.指纹纹线距离估计的两种方法,谱分析法和统计窗法[J].南京大学学报:自然科学版,2002,38(2):189-196.
  • 10Maio D, Maltoni D. Direct gray-scale minutiae detection in fingerprint. IEEE Transactions on Pattern Analysis and Matching Intelligence,1997,19 (1):27-39.

共引文献21

同被引文献28

  • 1于天河,郝富春,康为民,戴景民.红外图像增强技术综述[J].红外与激光工程,2007,36(z2):335-338. 被引量:59
  • 2李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 3Bemsen J. Dynamic thresholding of gray-level images [C] //Eighth International Conference on Pattern Recognition, Paris, Oct 27-31, 1986. France: IEEE Computer Society Press, 1986: 1251-1255.
  • 4Niblack W. An introduction to digital image processing [M]. Prentice-Hall International, Englewood Cliffs, NJ, 1986: 115-116.
  • 5Yanowitz S D, Bruckstein A M. A new method for image segmentation [J]. Computer Vision, Graphics, and Image Processing(S1077-3142), 1989, 46(1): 82-95.
  • 6Kim I K, Jung D W, Park R H. Document image binarization based on topographic analysis using a water flow model [J]. Pattern Recognition(S0031-3202), 2002, 35(1): 265-277.
  • 7Hyun-Hwa Oh, Kil-Taek Lim, Sung-I1 Chien. An improved binarization algorithm based on a water flowmodel for document image with in homogeneous backgrounds [J]. Pattern Recognition(S0031-3202), 2005, 38(12): 2612-2625.
  • 8Ilya Blayvas, Alfred Bruckstein, Ron Kimmel. Efficient computation of adaptive threshold surfaces for image binarization [J]. Pattern Recognition(S0031,3202), 2006, 39(1): 89-101.
  • 9Donoho D L, Johnstone I. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika(S0006-3444), 1994, 81(3): 425-455.
  • 10Candes E J, Donoho D L. Curvelets-a surprisingly effective non-adaptive representation for objects with edges [C]// Curves and Surfaces. Nashville, T N: Vanderbilt University Press, 2000: 105-120.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部