期刊文献+

嵌入式内存数据库的存储和索引算法研究 被引量:4

Research on Data Organization and Index of EMMDB
下载PDF
导出
摘要 提出了用于嵌入式内存数据库的更高效的数据存储算法(EHAS)和索引算法(PMCT-tree)。EHAS算法是基于区-段式,结合类可扩散列的思想,将记录以唯一对应的三元组作为区标号、段标号、地址标号来定位存储的算法。PMCT-tree比典型的T树增加了一种多路分支目录(PMC),它是由T树节点中抽取出的部分边缘阈值构成的。测试结果表明,EHAS算法加快了存储响应时间,且在一定条件下其平均查询时间复杂度可达到常数级;PMCT-tree算法在有效性和查询响应时间上性能良好。 This paper proposes the EHAS(quasi-extendible hashing area-segment) and the PMCT-tree algorithms, which are more efficient ones on data organization and index of embedded main-memory database (EMMDB). The EHAS is a storage algorithm which combines quasi-extendible hashing and is based on area-segment method. It lo- cates and stores records with corresponding unique triples, each of which has three parts separately as an area sign, a segment sign and a storage address sign. The PMCT-tree has a priority match catalog (PMC) more than typical T-tree. The PMC is composed of some edges thresholds, which are extracted from T-tree nodes. Experimental re- sults indicate that the EHAS algorithm accelerates storage response time and its average querying time complexity can reach a constant level under certain conditions; and the PMCT-tree algorithm is good on effectiveness and querying response time.
出处 《计算机科学与探索》 CSCD 2010年第8期742-748,共7页 Journal of Frontiers of Computer Science and Technology
基金 国家科技型中小企业技术创新基金No.07C26224501847 广西科学研究与技术开发计划项目No.09321073~~
关键词 嵌入式内存数据库 T树 索引 类可扩散列 区-段式 embedded main-memory database (EMMDB) T-tree index quasi-extendible hashing area-segmentmethod
  • 相关文献

参考文献8

二级参考文献25

  • 1阳国贵,王升,张火炬,吴泉源.主存数据库系统与技术[J].软件学报,1994,5(3):22-28. 被引量:4
  • 2杨武军,张继荣,屈军锁.内存数据库技术综述[J].西安邮电学院学报,2005,10(3):95-99. 被引量:39
  • 3胡国玲,刘云生,彭嘉雄.内存数据库系统的恢复技术[J].华中理工大学学报,1996,24(3):35-38. 被引量:6
  • 4廖国琼,刘云生,肖迎元.实时内存数据库分区模糊检验点策略[J].计算机研究与发展,2006,43(7):1291-1296. 被引量:6
  • 5[1]Lehman T J, Carey M J. A Study of Index Structures for Main Memory Database Management Systems. In Proc. of ACM-SIGMOD Intl Conference on Management of Data, 1986:239-250
  • 6[2]Lu Hongjun, Yuet Yeung Ng, Tian Zengping. T-tree or B-tree: Main Memory Database Index Structure Reviewed. Australasian Database Conference, 2000:65-73
  • 7[5]Molina H G, Salem K. Main Memoy Database Systems: An Overview.IEEE Transactions on Knowledge and Data Engineering, 1992,4(6)
  • 8Eliezer L, Avi S. Incremental Recovery in Main Memory Database Systems. IEEE Transactions on Knowledge and data Engineering, 1992,4(6): 529~540.
  • 9Lam K Y, Kuo T W. Real-Time Database Architecture and Techniques. Boston: Kluwer academic publishers, 2001.
  • 10Huang J. Recovery Techniques in Real-Time Main Memory Databases:[Ph. D. Dissertation]. School of Computer Science, The University of Oklahoma.

共引文献40

同被引文献11

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部