摘要
在考虑悬浮隧道结构非线性的基础上,得到管段横向振动微分方程。采用Melnikov函数分析水下悬浮隧道在洋流涡激振动状况下的混沌行为,得到结构发生混沌运动的判据。分析表明,发生涡激共振和非共振两种情况下的判据并不相同。对悬浮隧道进行数值模拟,当仅以速度作为控制参数时,悬浮隧道随着洋流速度的增加可以是拟周期运动和混沌运动,并给出算例发生混沌运动时涡激共振和非共振两种情况的临界速度。
On the basis of the structural nonlinearity of the submerged floating tunnel(SFT),the differential equation for lateral movements of pipe segments is obtained.By using the Melnikov function the chaotic behavior of the SFT under the current vortex-excited vibration is analyzed.The criterion of chaotic movements of the structure is obtained.It is found out that when vortex-excited synchronization and vortex-excited non-synchronization happen,the criteria are different.The SFT vibration is simulated numerically.When the current velocity is considered to be the only variable parameter,the SFT vibration will be in quasi-period motion or chaotic motion with the increase of the velocity.The critical velocities of chaotic motion in both vortex-excited synchronization and vortex-excited non-synchronization are derived.
出处
《铁道学报》
EI
CAS
CSCD
北大核心
2010年第4期146-150,共5页
Journal of the China Railway Society
基金
国家自然科学基金资助项目(10572121)
关键词
悬浮隧道
MELNIKOV函数
涡激
混沌运动
数值模拟
submerged floating tunnel
Melnikov function
vortex-excited
chaotic motion
numerical simulation