期刊文献+

关于子流形曲率张量模长的估计

Estimations on the Length of Submanifold Curvature Tersor
下载PDF
导出
摘要 研究了常曲率空间中极小子流形,用一种特殊的方法对其黎曼曲率张量和李奇曲率张量模长进行了估计,明确的算出了它们的上下确界,获得了两个相关结论. In this article,the author studies the minimal submanifold of constant curvature manifold,estimates the length of its Riemann curvature tensor and Ricci curvature tensor with a special method and clearly calculates their supremum and infimum,then obtains two relevant conclusions.
作者 朱业成
出处 《安徽师范大学学报(自然科学版)》 CAS 北大核心 2010年第3期214-217,共4页 Journal of Anhui Normal University(Natural Science)
基金 安徽工业大学青年科研基金(QZ200918)
关键词 黎曼曲率 李奇曲率 极小子流形 Rieman curvature Ricci curvature minimal submanifolds
  • 相关文献

参考文献5

  • 1CALABI E. Improper offine hyperspheres of covex type and a generalization of a theorem by K. Jo regens[J]. Mich Math J, 1958(5) : 105 - 126.
  • 2徐森林,梅加强.C_∞ Compactness for Minimal Submanifolds in the Unit Sphere[J].Journal of Mathematical Research and Exposition,2003,23(2):191-198. 被引量:1
  • 3刘华侨.极小子流形刚性的若干结果[J].数学年刊(A辑),2009,30(3):297-308. 被引量:1
  • 4SHEN Y B. Curvature and stability for minimal submanifolds[J]. Sci Sinica(ser A), 1988(31 ):787- 797.
  • 5WANGLJ ZHUYC SONGWD.Pinching theorems for pseudo-umbilical with parallel mean curvature vector.安徽师范大学学报:自然科学版,2007,(30):103-107.

二级参考文献15

  • 1BERARD P. Form vanishing theorems to estimating theorems: the Bocher technique revisited [J]. Bull. Amer. Math. Soc., 1988, 19: 371-406.
  • 2CHEEGER J. Finiteness theorems for Riemannian manifolds [J]. Amer. J. Math., 1970, 92: 61-74.
  • 3CHERN S. S, et al. Minimal Submanifolds of a Sphere with Second Fundamental from Constant Length [M]. Functional Analysis and Related Fields, Springer-Verlag, 1970, 59-75.
  • 4CHOI H I, SCHOEN R. The space of minimal embedding of a surface into a three dimensional manifold of positive Ricci curvature [J]. Invent. Math., 1985, 81: 387-394.
  • 5CHEN Q, XU S L. Rigidity of compact minimal submanifolds in a unit sphere [J]. Geom. Dedicata, 1993, 45: 83-88.
  • 6GREENE R, WU H. Lipschitz convergence of Riemabbian manifolds [J]. Pacific. J. Match., 1988, 131: 119-141.
  • 7GROMOV M. Structures Metriques Pour Les Varieties Riemmniennes [M]. Cedeic-Fernand Nathan, Paris, 1981.
  • 8KASUE A. A convergence theorem for Riemannian manifolds and some applications [J]. Nagoya Math. J., 1989, 114: 21-51.
  • 9LAWSON H B. Minimal varieties [J]. Proc. Symp. Pure Math., 1975, 27(1): 143-175.
  • 10MAEDA M. Volume estimate of submanifolds in compact Riemannian manifolds [J]. J.Math. Soc. Japan, 1978, 80: 533-551.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部