摘要
通过引入两端固支、两端铰支等不同边界条件下,均布荷载作用下的挠度曲线作为系杆拱桥柔性吊杆在自由振动下的振型函数,运用瑞利能量法原理,推导出索力、抗弯刚度与吊杆固有频率间的关系式,并得出吊杆索力基于前2阶固有频率的测量公式。该公式将抗弯刚度作为隐式计算参数,回避了其难以识别的问题。以某系杆拱桥的监测实践为背景,通过与千斤顶张拉结果的对比分析,对吊杆的边界条件、计算长度进行识别,证明该公式更准确的考虑了抗弯刚度和边界条件的影响,可满足施工和运营期间吊杆张力的测试需要。
The vibration modes of flexible hanger rods in tied arch bridges are obtained from the deflection curves of the bridge under uniformly distributed load and restrained by different boundary conditions. Then, the paper derives the relationship between the tension of anchor wire, bending rigidity and natural frequency of the hanger rod. Thus, the measurement formula of the first 2 natural frequencies of the hanger rod can be obtained using Rayleigh energy method. This formula treats the flexural rigidity as an implicit calculation parameter, so that the difficulty in indentifying it is avoided. Finally, the calculation results are compared with the measured results, demonstrating that the proposed formula meets the requirements of tension measurement of hanger rods during construction and operation.
出处
《工程力学》
EI
CSCD
北大核心
2010年第8期174-178,198,共6页
Engineering Mechanics
关键词
桥梁工程
系杆拱桥
吊杆
索力测量公式
能量法
抗弯刚度
边界条件
计算长度
bridge engineering
tied arch bridge
hanger rods
tension measurement formula
energy method
flexural rigidity
boundary condition
calculation length