期刊文献+

非均匀类簇密度聚类的多粒度自学习算法 被引量:4

Multi-granularity self-learning clustering algorithm for non-uniform cluster density
下载PDF
导出
摘要 针对非均匀类簇密度聚类问题,从商空间粒度理论出发,提出一种多粒度自学习聚类算法(multi-granularity self-learning clustering algorithm,MSCA)。算法通过构造聚合树结构和定义粒度函数对问题逐层求解,并在每层聚合过程中根据聚合区间以自学习的方式动态确定聚合粒度,解决了传统聚类算法从非均匀类簇密度数据中无法得到不同层次的聚合特征且参数对经验依赖性过高的问题。理论和实验表明,MSCA算法可以发现任意形状类簇,有效处理噪声,并能发现关键聚合层,具有较好的计算复杂性。 Based on the quotient space granularity theory,a multi-granularity self-learning clustering algorithm(MSCA) is presented for problems with non-uniform cluster density.By constructing a feature clustering tree and defining a granularity function,MSCA solves problems layer by layer and learns clustering granularity dynamically by itself in each step.Traditional clustering algorithms with global parameters cannot discover data features in various layers,and their parameters depend on professional experience seriously,while MSCA can overcome these defects.Both theory analysis and experimental results show that MSCA can discover key clustering layers and clusters with arbitrary shape.Furthermore,it is insensitive to noise and has a satisfactory computing complexity.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第8期1760-1765,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(50175064)资助课题
关键词 数据挖掘 聚类算法 非均匀类簇密度聚类 粒度计算 自学习算法 data mining clustering algorithm clustering with non-uniform cluster density granular computing self-learning algorithm
  • 相关文献

参考文献14

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074
  • 2MacQueen J.Some methods for classification and analysis of multivariate observations[C]// Proc.of the 5th Berkeley Symposium on Mathematics Statistic Problem,1967:281-297.
  • 3Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proc.of the Second International Conference on Knowledge Discovery and Data Mining,1996:226-231.
  • 4Hinneburg A,Keim D.An efficient approach to clustering in large multimedia databases with noise[C]// Proc.of the 4th International Conference on Knowledge Discovery and Data Mining,1998:58-65.
  • 5Zhang T,Ramakrishnan R,Livny M.BIRCH:an efficient data clustering method for very large databases[C]// Proc.of the ACM SIGMOD,1996:103-114.
  • 6Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[C]// Proc.of the ACM SIGMOD International Conference on Management of Data,1998:73-84.
  • 7Bezdek J C,Hathaway R J.Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm[J].IEEE Trans.on Neural Networks,1992,3(5):787-793.
  • 8Tari L,Baral C,Kim S.Fuzzy c-means clustering with prior biological knowledge[J].Journal of Biomedical Informatics,2009,42(1):74-81.
  • 9唐旭清,朱平,程家兴.基于模糊商空间的聚类分析方法(英文)[J].软件学报,2008,19(4):861-868. 被引量:17
  • 10赵恒,杨万海.基于属性加权的模糊K-Modes聚类算法[J].系统工程与电子技术,2003,25(10):1299-1302. 被引量:12

二级参考文献21

共引文献1299

同被引文献44

  • 1王刚,魏凤,张智文.RFID在物流中的应用[J].管理现代化,2006,26(4):4-6. 被引量:16
  • 2贺玲,吴玲达,蔡益朝.高维空间中数据的相似性度量[J].数学的实践与认识,2006,36(9):189-194. 被引量:20
  • 3Pilevar A H, Sukumar M. GCHL.. a grid-clustering algorithm for high-dimensional very large spatial data base[J]. Pattern Recognition Letters ,2005,26(7) :999 - 1010.
  • 4Cheeseman P, Stutz J. Bayesian classification (AutoClass) theory and results. In advances in knowledge discovery and data mining[M]. AAAI/MIT Press,1996:61 - 83.
  • 5Preston D R, Brodley C E, Khardon R, et al. Redefining class definitions using constraint-based clustering[C]// Proc. of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010: 823 - 832.
  • 6Liu N, Zhang B Y, Yan J, et al. Learning similarity measures in the nonorthogonal space[C] // Proc. of the 13th Conference on Information and Knowledge Management, 200: 334 - 341.
  • 7B6hm C, Plant C, Shao J M, et al. Clustering by synchronization[C]// Proc. of the 16th ACM S IGKDD Conference on Knowledge Discovery and Data Mining, 2010:583 - 592.
  • 8Karypis G, Han E H, Kumar V. CHAMELEON: a hierarchical clustering algorithm using dynamic modeling [ J]. Computer, 1999,32(2) :68 -75.
  • 9Kumar P, Krishna P R, Bapi R S, et al. Rough clustering of sequential data[J]. Data &Knowledge Engineering, 2007, 3 (2) :183- 199.
  • 10NGR T, Han J W. CLARANS: a method for clustering objects for spatial data mining[J]. IEEE Trans. on Knowledge and Data Engineering ,2002,14(5) :1003 - 1015.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部